The mechanisms of sulfoxidation and epoxidation mediated by previously synthesized and characterized iron(III)-iodosylbenzene adduct, Fe(OIPh) were investigated using para-substituted thioanisole and styrene derivatives as model substrates. Based on detailed kinetic reaction experiments, including the linear free-energy relationships between the relative reaction rates (log) and the (4R-PhSMe) with = -0.65 (catalytic) and = -1.13 (stoichiometric), we obtained strong evidence that the stoichiometric and catalytic oxidation of thioanisoles mediated by Fe(OIPh) species involves direct oxygen transfer. The small negative slope -2.18 from log versus for 4R-PhSMe gives further clear evidence for the direct oxygen atom transfer mechanism. On the contrary, with the linear free-energy relationships between the relative reaction rates (log) and total substituent effect (TE, 4R-PhCHCH) parameters with slope = 0.33 (catalytic) and 2.02 (stoichiometric), the stoichiometric and catalytic epoxidation of styrenes takes place through a nonconcerted electron transfer (ET) mechanism, including the formation of the radicaloid benzylic radical intermediate in the rate-determining step. On the basis of mechanistic studies, we came to the conclusion that the title iron(III)-iodosylbenzene complex is able to oxygenate sulfides and alkenes before it is transformed into the oxo-iron form by cleavage of the O-I bond.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305164PMC
http://dx.doi.org/10.3390/molecules28124745DOI Listing

Publication Analysis

Top Keywords

mechanisms sulfoxidation
8
sulfoxidation epoxidation
8
epoxidation mediated
8
ironiii-iodosylbenzene adduct
8
linear free-energy
8
free-energy relationships
8
relationships relative
8
relative reaction
8
reaction rates
8
rates log
8

Similar Publications

Introduction: Chinese herbal medicines are relatively inexpensive and have fewer side effects, making them an effective option for improving health and treating diseases. As a result, they have gained more attention in recent years. The weaning period is a critical stage in the life of yaks, often inducing stress in calves.

View Article and Find Full Text PDF

Objective: The prognosis for severe asthma is poor, and the current treatment options are limited. The methyl-CpG binding domain protein 2 (MBD2) participates in neutrophil-mediated severe asthma through epigenetic regulation. Neutrophil extracellular traps (NETs) play a critical role in the pathogenesis of severe asthma.

View Article and Find Full Text PDF

Metabolite Profiling and Association Analysis of Leaf Tipburn in Heat-Tolerant Bunching Onion Varieties.

Plants (Basel)

January 2025

Laboratory of Vegetable Crop Science, Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan.

The bunching onion is an important leafy vegetable, prized for its distinctive flavor and color. It is consumed year-round in Japan, where a stable supply is essential. However, in recent years, the challenges posed by climate change and global warming have resulted in adverse effects on bunching onions, including stunted growth, discoloration, and the development of leaf tipburn, threatening both crop quality and yield.

View Article and Find Full Text PDF

In recent years, liquid-solid triboelectric nanogenerators (L-S TENGs) have been rapidly developed in the field of liquid energy harvesting and self-powered sensing. This is due to a number of advantages inherent in the technology, including the low cost of fabricated materials, structural diversity, high charge-energy conversion efficiency, environmental friendliness, and a wide range of applications. As liquid phase dielectric materials typically used in L-S TENG, a variety of organic and inorganic single-phase liquids, including distilled water, acidic solutions, sodium chloride solutions, acetone, dimethyl sulfoxide, and acetonitrile, as well as paraffinic oils, have been used in experiments.

View Article and Find Full Text PDF

Mechanism of dissolution of cellulose in quaternary ammonium phosphate/dimethyl sulfoxide.

Carbohydr Polym

March 2025

Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Finding of new environmentally friendly cellulose solvent system is critical for efficient usage of cellulose. In this paper, cellulose solvent based on the mixture of di-tetrabutylammonium hydrogen phosphate and dimethyl sulfoxide (TBAHPO/DMSO) was developed. We found that TBAHPO/DMSO system has excellent solubility of cellulose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!