Investigation of Broadband Optical Nonlinear Absorption and Transient Dynamics in Orange IV Containing Azobenzene.

Molecules

Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.

Published: June 2023

Broadband reverse saturable absorption is systematically investigated via Z-scan, transient absorption spectrum (TAS). The excited state absorption and negative refraction of Orange IV are observed in the Z-scan experiment at 532 nm. Meanwhile, two-photon-induced excited state absorption and pure two-photon absorption are observed at 600 nm and 700 nm with the pulse width of 190 fs, respectively. An ultrafast broadband absorption in the visible wavelength region is observed via TAS. The different nonlinear absorption mechanisms at multiple wavelengths are discussed and interpreted from the results of TAS. In addition, the ultrafast dynamics of negative refraction in the excited state of Orange IV are investigated via a degenerate phase object pump-probe, from which the weak long-lived excited state is extracted. All studies indicate that Orange IV has the potential to be further optimized into a superior broadband reverse saturable absorption material and also has certain reference significance for the study of optical nonlinearity in organic molecules containing azobenzene groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303707PMC
http://dx.doi.org/10.3390/molecules28124692DOI Listing

Publication Analysis

Top Keywords

excited state
16
absorption
9
nonlinear absorption
8
broadband reverse
8
reverse saturable
8
saturable absorption
8
state absorption
8
negative refraction
8
investigation broadband
4
broadband optical
4

Similar Publications

Conjugated polymers, represented by polymeric carbon nitrides (PCNs), have risen to prominence as new-generation photocatalysts for overall water splitting (OWS). Despite considerable efforts, achieving highly crystalline PCNs with minimal structural defects remains a great challenge, and it is also difficult to examine the exact impact of complex defect states on OWS process, which largely limits their quantum efficiency. Herein, we devise a 'in-situ salt flux' assisted copolymerization protocol by using nitrogen-rich and nitrogen-deficient monomers to precisely manipulate the structural defects of poly (triazine imide) (PTI) single crystals.

View Article and Find Full Text PDF

Hydrogen Bond "Double-Edged Sword Effect" on Organic Room-Temperature Phosphorescence Properties: A Theoretical Perspective.

J Phys Chem A

January 2025

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.

The strategy of designing efficient room-temperature phosphorescence (RTP) emitters based on hydrogen bond interactions has attracted great attention in recent years. However, the regulation mechanism of the hydrogen bond on the RTP property remains unclear, and corresponding theoretical investigations are highly desired. Herein, the structure-property relationship and the internal mechanism of the hydrogen bond effect in regulating the RTP property are studied through the combination of quantum mechanics and molecular mechanics methods (QM/MM) coupled with the thermal vibration correlation function method.

View Article and Find Full Text PDF

Structure of the Se Isomers─An Ab Initio Study.

J Phys Chem A

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.

This study investigates the equilibrium geometries of four different Se isomers using the coupled cluster single and double perturbative (CCSD(T)) method, extrapolating to the complete basis sets. The ground-state geometry of the Se isomer with the C structure (2.8715 Å, 2.

View Article and Find Full Text PDF

Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.

View Article and Find Full Text PDF

Chirality, a basic property of symmetry breaking, is crucial for fields such as biology and physics. Recent advances in the study of chiral systems have stimulated interest in the discovery of symmetry-breaking states that enable exotic phenomena such as spontaneous gyrotropic order and superconductivity. Here we examine the interaction between light chirality and electron spins in indium selenide and study the effect of magnetic field on emerging tunnelling photocurrents at the Van Hove singularity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!