Unlocking the Potential of Deep Eutectic Solvents for C-H Activation and Cross-Coupling Reactions: A Review.

Molecules

Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco.

Published: June 2023

Green chemistry principles have underpinned the development of deep eutectic solvents (DESs). In this brief overview, we discuss the potential of DESs as a greener alternative to volatile organic solvents for cross-coupling and C-H activation reactions in organic chemistry. DESs offer numerous benefits, such as easy preparation, low toxicity, high biodegradability, and the potential to replace volatile organic compounds. The ability of DESs to recover the catalyst-solvent system enhances their sustainability. This review highlights recent advances and challenges in utilizing DESs as a reaction media, as well as the impact of physicochemical properties on the reaction process. Several types of reactions are studied to highlight their effectiveness at promoting C-C bond formation. Aside from demonstrating the success of DESs in this context, this review also discusses the limitations and future prospects of DESs in organic chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302773PMC
http://dx.doi.org/10.3390/molecules28124651DOI Listing

Publication Analysis

Top Keywords

deep eutectic
8
eutectic solvents
8
c-h activation
8
volatile organic
8
organic chemistry
8
dess
7
unlocking potential
4
potential deep
4
solvents c-h
4
activation cross-coupling
4

Similar Publications

Influence of deep-eutectic and organic solvents on the recovery, molecular mass, and functional properties of dextran: Application using dextran film.

Int J Biol Macromol

December 2024

Bioprocess Engineering Laboratory, School of Chemical and Biotechnology, Centre for Bioenergy, SASTRA Deemed to be University, India. Electronic address:

The novelty of this study is to examine the impact of different solvent systems, namely organic and deep eutectic solvents, on recovery yield, antioxidant activity, poly-dispersity index, and functional properties of microbial dextran. The optimized conditions for maximum dextran recovery were obtained using organic solvent found to be: supernatant: organic solvent - 1:4 v/v; organic solvents: ethanol, isopropanol, and acetone; temperature: 0 °C; and time: 16 h. Though a similar structure was obtained for dextran recovered using various solvents, the degree of branching varied, with DES-precipitated dextran having the highest branching of 20 % α-(1,3) linkages.

View Article and Find Full Text PDF

Effective monitoring of veterinary drug residues in food is essential for legislation compliance and food safety, yet remains challenging due to low concentrations and complex matrices. This study introduced a miniaturized 96-well electromembrane extraction (EME) technique for pre-concentration and isolation 80 prohibited/restricted veterinary drugs from honey samples. Three liquid membranes were developed and characterized: V1 ("V" for veterinary), a mixture of 2-undecanone and 0.

View Article and Find Full Text PDF

The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method.

View Article and Find Full Text PDF

In this study, ultrasound-assisted glycated ovalbumin (G-UOVA) based on natural deep eutectic solvents (NADES) was prepared using response surface optimization. The binding affinity of (-)-gallocatechin gallate (GCG) to native OVA (NOVA), ultrasound treated OVA (UOVA), glycated OVA (GOVA), and G-UOVA followed G-UOVA > GOVA > UOVA > NOVA. The effects of various modifications and GCG binding on the secondary structure, particle size, and thermal stability of NOVA were investigated.

View Article and Find Full Text PDF

Natural deep eutectic solvents (NaDES) were employed for the extraction of bilberry and green tea leaves. This study explored the incorporation of these NaDES extracts into various carrier systems: hydrogels, emulsions, and emulgels stabilized with hydroxyethyl cellulose or xanthan gum. The results demonstrated that, when combined with synthetic UV filters, the NaDES extracts significantly enhanced the SPF and improved the antioxidant properties of the formulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!