Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastation to human society through its high virulence, infectivity, and genomic mutations, which reduced the efficacy of vaccines. Here, we report the development of aptamers that effectively interfere with SARS-CoV-2 infection by targeting its spike protein, which plays a pivotal role in host cell entry of the virus through interaction with the viral receptor angiotensin-converting enzyme 2 (ACE2). To develop highly effective aptamers and to understand their mechanism in inhibiting viral infection, we determined the three-dimensional (3D) structures of aptamer/receptor-binding domain (RBD) complexes using cryogenic electron microscopy (cryo-EM). Moreover, we developed bivalent aptamers targeting two distinct regions of the RBD in the spike protein that directly interact with ACE2. One aptamer interferes with the binding of ACE2 by blocking the ACE2-binding site in RBD, and the other aptamer allosterically inhibits ACE2 by binding to a distinct face of RBD. Using the 3D structures of aptamer-RBD complexes, we minimized and optimized these aptamers. By combining the optimized aptamers, we developed a bivalent aptamer that showed a stronger inhibitory effect on virus infection than the component aptamers. This study confirms that the structure-based aptamer-design approach has a high potential in developing antiviral drugs against SARS-CoV-2 and other viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303109PMC
http://dx.doi.org/10.3390/molecules28124645DOI Listing

Publication Analysis

Top Keywords

bivalent aptamers
8
sars-cov-2 infection
8
spike protein
8
developed bivalent
8
optimized aptamers
8
aptamers
7
structure-guided development
4
development bivalent
4
aptamers blocking
4
sars-cov-2
4

Similar Publications

Bivalent OX40 Aptamer and CpG as Dual Agonists for Cancer Immunotherapy.

ACS Appl Mater Interfaces

January 2025

College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.

Cancer immunotherapy has revolutionized cancer treatment by harnessing the body's immune system to recognize and attack tumors. Over the past 25 years, the use of blocking antibodies has fundamentally transformed the landscape of cancer therapy. However, despite extensive research, agonist antibodies targeting costimulatory receptors such as ICOS, GITR, OX40, CD27, and 4-1BB have consistently underperformed in clinical trials over the past 15 years, failing to meet the anticipated success.

View Article and Find Full Text PDF

Continuous and reagentless biomolecular detection technologies are bringing an evolutionary influence on disease diagnostics and treatment. Aptamers are attractive as specific recognition probes because they are capable of regeneration without washing. Unfortunately, the affinity and dissociation kinetics of the aptamers developed to date show an inverse relationship, preventing continuous and reagentless detection of protein targets due to their low dissociation rates.

View Article and Find Full Text PDF

Androgen deprivation therapy has been the primary treatment strategy for advanced prostate cancer (PCa). But most patients develop castration resistance over time. For FDA-approved second-generation androgen receptor (AR) antagonists, including enzalutamide (ENZ) and abiraterone (AA), patients who initially respond to them eventually develop resistance.

View Article and Find Full Text PDF

Riboswitches are involved in regulating the gene expression in bacteria. They are located within the untranslated regions of bacterial messenger RNA and function as switches by adjusting their shape, depending on the presence or absence of specific ligands. To decipher the fundamental aspects of bacterial gene control, it is therefore important to understand the mechanisms that underlie these conformational switches.

View Article and Find Full Text PDF

An Aptamer Glue Enables Hyperefficient Targeted Membrane Protein Degradation.

JACS Au

August 2024

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.

Article Synopsis
  • Targeted membrane protein degradation (TMPD) is a promising therapy for eliminating harmful membrane proteins and studying biological pathways.
  • Current TMPD methods have limitations, including complex designs and availability issues.
  • This study introduces an efficient TMPD system that combines an improved aptamer glue with a strong protein transport shuttle, successfully degrading specific proteins in different cell lines, indicating progress in molecular medicine.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!