Today, finding low-cost electro-catalysts for methanol and ethanol oxidation with high performance and stability is one of the new research topics. A nanocatalyst based on metal oxides in the form of MnMoO was synthesized by a hydrothermal method for methanol (MOR) and ethanol (EOR) oxidation reactions. Adding reduced graphene oxide (rGO) to the catalyst structure improved the electrocatalytic activity of MnMoO for the oxidation processes. The crystal structure and morphology of the MnMoO and MnMoO-rGO nanocatalysts were investigated by physical analyses such as scanning electron microscopy and X-ray diffraction. Their abilities for MOR and EOR processes in an alkaline medium were evaluated by performing electrochemical tests such as cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. MnMoO-rGO showed oxidation current densities of 60.59 and 25.39 mA/cm and peak potentials of 0.62 and 0.67 V in MOR and EOR processes (at a scan rate of 40 mV/s), respectively. Moreover, stabilities of 91.7% in MOR and 88.6% in EOR processes were obtained from the chronoamperometry analysis within 6 h. All these features make MnMoO-rGO a promising electrochemical catalyst for the oxidation of alcohols.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304452 | PMC |
http://dx.doi.org/10.3390/molecules28124613 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China. Electronic address:
Combining polymer and surfactant in one agent namely polymeric surfactants with both high viscosity and surface activity has become a viable alternative for the traditional enhanced oil recovery (EOR) processes. With the purpose of developing new polymeric surfactants, the biopolymer flooding agent sphingan WL gum was modified by octenyl succinic anhydride (OSA) through the esterification reaction. The effects of molecular weight (MW) of WL and the OSA: WL ratio on the properties of the products were investigated.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China.
In the process of oilfield development, the surfactant-polymer (SP) composite system has shown significant effects in enhancing oil recovery (EOR) due to its excellent interfacial activity and viscoelastic properties. However, with the continuous increase in the volume of composite flooding injection, a decline in injection-production capacity (I/P capacity) has been observed. Through the observation of frozen core slices, it was found that during the secondary composite flooding (SCF) process, a large amount of residual oil in the form of intergranular adsorption remained in the core pores.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing 163318, China.
Due to the complex physical properties of low-permeability glutenite reservoirs, the oil recovery rate with conventional development is low. Surfactants are effective additives for enhanced oil recovery (EOR) due to their good ability of wettability alteration and interfacial tension (IFT) reduction, but the reason why imbibition efficiencies vary with different types of surfactants and the mechanism of enhanced imbibition in the glutenite reservoirs is not clear. In this study, the imbibition efficiency and recovery of surfactants including the nonionic, anionic, and cationic surfactants as well as nanofluids were evaluated and compared with produced water (PW) using low-permeability glutenite core samples from the Lower Urho Formation in the Mahu oil field.
View Article and Find Full Text PDFACS Omega
December 2024
Enhanced Oil Recovery & Carbon Utilization and Storage Laboratory, Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, India.
This research explores the development of engineered oil-water microemulsions stabilized by a synergistic combination of polymer and surfactant to enhance stability and interfacial properties for improved enhanced oil recovery (EOR). Conventional surfactant-stabilized emulsions often suffer from phase instability and limited wettability alteration during water flooding and chemical injection, hindering the EOR efficiency. In contrast, our formulations incorporating polymers significantly increase the emulsion viscosity and resilience to temperature fluctuations, resulting in enhanced phase stability.
View Article and Find Full Text PDFLangmuir
December 2024
Research Institute of Petroleum Exploration & Development, Beijing 100083, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!