Humanized mice are an invaluable tool for investigating human diseases such as cancer, infectious diseases, and graft-versus-host disease (GvHD). However, it is crucial to understand the strengths and limitations of humanized mice and select the most appropriate model. In this study, we describe the development of the human lymphoid and myeloid lineages using a flow cytometric analysis in four humanized mouse models derived from NOD mice xenotransplanted with CD34 fetal cord blood from a single donor. Our results showed that all murine strains sustained human immune cells within a proinflammatory environment induced by GvHD. However, the Hu-SGM3 model consistently generated higher numbers of human T cells, monocytes, dendritic cells, mast cells, and megakaryocytes, and a low number of circulating platelets showing an activated profile when compared with the other murine strains. The hu-NOG-EXL model had a similar cell development profile but a higher number of circulating platelets with an inactivated state, and the hu-NSG and hu-NCG developed low frequencies of immune cells compared with the other models. Interestingly, only the hu-SGM3 and hu-EXL models developed mast cells. In conclusion, our findings highlight the importance of selecting the appropriate humanized mouse model for specific research questions, considering the strengths and limitations of each model and the immune cell populations of interest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300940 | PMC |
http://dx.doi.org/10.3390/microorganisms11061548 | DOI Listing |
J Clin Invest
January 2025
Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
Single-cell transcriptomics applied to cerebrospinal fluid (CSF) for elucidating the pathophysiology of neurologic diseases has produced only a preliminary characterization of CSF immune cells. CSF derives from and borders central nervous system (CNS) tissue, allowing for comprehensive accounting of cell types along with their relative abundance and immunologic profiles relevant to CNS diseases. Using integration techniques applied to publicly available datasets in combination with our own studies, we generated a compendium with 139 subjects encompassing 135 CSF and 58 blood samples.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan.
Differentiation therapy with all-trans retinoic acid (ATRA) is well established for acute promyelocytic leukemia (APL). However, the narrow application and tolerance development of ATRA remain to be improved. A number of kinase inhibitors have been reported to induce cell differentiation.
View Article and Find Full Text PDFBMC Med
December 2024
Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is recommended for patients with KMT2A-rearranged (KMT2A-r) leukemia whereas relapse remains high. We aimed to determine whether intensified conditioning containing decitabine (Dec) could reduce relapse compared with standard myeloablative conditioning in adult patients with KMT2A-r leukemia.
Methods: We performed a multicenter retrospective study at seven institutions in China.
Case Rep Hematol
December 2024
Department of Pathology and Laboratory Medicine, University of California Irvine (UCI) Medical Center, Orange, USA.
Chronic myelomonocytic leukemia (CMML) is a myelodysplastic/myeloproliferative neoplasm characterized by peripheral blood monocytosis and bone marrow dysplasia. In approximately one-fourth of cases, CMML can demonstrate progression to acute myeloid leukemia (AML), referred to as AML ex CMML. We present a 58-year-old woman with a past medical history of idiopathic thrombocytopenic purpura (ITP) who demonstrated 24% bone marrow blasts on a repeat biopsy obtained two years after being diagnosed with CMML.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
December 2024
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
Noncoding cis-regulatory elements (CREs), such as transcriptional enhancers, are key regulators of gene expression programs. Accessible chromatin and H3K27ac are well-recognized markers for CREs associated with their biological function. Deregulation of CREs is commonly found in hematopoietic malignancies yet the extent to which CRE dysfunction contributes to pathophysiology remains incompletely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!