Evaluation of Antibacterial Activity of Selenium Nanoparticles against Food-Borne Pathogens.

Microorganisms

Department of Electrical Engineering and Computer Science, Alabama A&M University, Huntsville, AL 35762, USA.

Published: June 2023

Selenium is an essential micronutrient for all mammals and plays an important role in maintaining human physiological functions. Selenium nanoparticles (SeNPs) have been shown to demonstrate antioxidant and antimicrobial activity. The objective of this study was to explore whether SeNPs have the potential to be used as food preservatives with which to reduce food spoilage. SeNPs were synthesized through ascorbic acid reduction of sodium selenite (NaSeO) in the presence of bovine serum albumin (BSA) as a capping and stabilizing agent. The chemically synthesized SeNPs had a spherical conformation with an average diameter of 22.8 ± 4.7 nm. FTIR analysis confirmed that the nanoparticles were covered with BSA. We further tested the antibacterial activity of these SeNPs against ten common food-borne bacteria. A colony-forming unit assay showed that SeNPs exhibited inhibition on the growth of (ATCC15313) and (ATCC 700583) starting at 0.5 µg/mL, but higher concentrations were required to slow down the growth of (ATCC12600), (ATCC 33787), and (ATCC19585). No inhibition was observed on the growth of the other five test bacteria in our study. Our data suggested that the chemically synthesized SeNPs were able to inhibit the growth of some food-borne bacteria. The size and shape of SeNPs, method of synthesis, and combination of SeNPs with other food preservatives should be considered when SeNPs are to be used for the prevention of bacteria-mediated food spoilage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300849PMC
http://dx.doi.org/10.3390/microorganisms11061519DOI Listing

Publication Analysis

Top Keywords

senps
10
antibacterial activity
8
selenium nanoparticles
8
food preservatives
8
food spoilage
8
chemically synthesized
8
synthesized senps
8
food-borne bacteria
8
evaluation antibacterial
4
activity selenium
4

Similar Publications

Background: The in vitro propagation of halophytes is innovative perspective for sustainable agriculture, conservation of natural plants and essential raw materials for industry due to increasing soil salinization and decreasing freshwater availability. Sarcocornia fruticosa, a halophytic plant, may hold promise for biosaline production systems and achieve bioactive products. Understanding the salt tolerance mechanisms of halophytes through elicitors can enhance the production of secondary metabolites, such as phenolics and flavonoids, under saline environment.

View Article and Find Full Text PDF

Multifunctional layer-by-layer smart film with betalains and selenium nanoparticles for intelligent meat freshness monitoring and preservation.

Food Chem

January 2025

Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China. Electronic address:

Multifunctional pH-responsive films were fabricated via layer-by-layer deposition of gelatin, chitosan, and carboxymethyl cellulose (CMC), incorporating selenium nanoparticles (SeNPs) and beetroot extract (BTE), to monitor and preserve beef freshness. SeNPs were synthesized and characterized via various techniques. BTE exhibited promising functional properties, and films demonstrated a significant color transition from red to yellow across pH 2-14.

View Article and Find Full Text PDF

The isolated Aspergillus flavus NSRN22 was used for green synthesis of silver and selenium nanoparticles (AgNPs and SeNPs). New food packaging films produced by combining each type of NPs with chitosan (CS) or sodium alginate (SA) were characterized. Transmission electron microscopy revealed that the average particle size was lower in case of AgNPs (9 to 14.

View Article and Find Full Text PDF

Recent research progress on the biological functions, synthesis and applications of selenium nanoparticles.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 400044, China. Electronic address:

Selenium is an essential trace element that is involved in a variety of complex biological processes and has a significant positive effect on the prevention and treatment of cardiovascular disease, inflammatory diseases, and cancer. Selenium in the body is mainly provided by daily meals. However, selenium has two sides, beneficial in moderation and harmful in excess.

View Article and Find Full Text PDF

Introduction: Selenium nanoparticles (SeNPs) have drawn a lot of interest among researchers because of their distinct impact on antioxidant activity, anti-inflammatory tests, antibacterial activity, and in the treatment of various diseases. A. linearis has shown great findings in biomedical applications because of its physio-chemical compounds such as Aspalathin, orientin, and isoorientin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!