Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transmission electron microscopy (TEM) is indispensable to reveal the cellular nanostructure of the 2:17-type Sm-Co based magnets which act as the first choice for high-temperature magnet-associated devices. However, structural deficiencies could be introduced into the TEM specimen during the ion milling process, which would provide misleading information to understand the microstructure-property relationship of such magnets. In this work, we performed a comparative investigation of the microstructure and microchemistry between two TEM specimens prepared under different ion milling conditions in a model commercial magnet SmGdCoCuFeZr (wt.%). It is found that additional low-energy ion milling will preferably damage the 1:5H cell boundaries, while having no influence on the 2:17R cell phase. The structure of cell boundary transforms from hexagonal into face-centered-cubic. In addition, the elemental distribution within the damaged cell boundaries becomes discontinuous, segregating into Sm/Gd-rich and Fe/Co/Cu-rich portions. Our study suggested that in order to reveal the true microstructure of the Sm-Co based magnets, the TEM specimen should be carefully prepared to avoid structural damage and artificial deficiencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305056 | PMC |
http://dx.doi.org/10.3390/ma16124378 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!