Hydraulic structures are typically subjected to long-term hydraulic loading, and concrete-the main material of structures-may suffer from cracking damage and seepage failure, which can threaten the safety of hydraulic structures. In order to assess the safety of hydraulic concrete structures and realize the accurate analysis of the whole failure process of hydraulic concrete structures under the coupling effect of seepage and stress, it is vital to comprehend the variation law of concrete permeability coefficients under complex stress states. In this paper, several concrete samples were prepared, designed for loading conditions of confining pressures and seepage pressures in the first stage, and axial pressures in the later stage, to carry out the permeability experiment of concrete materials under multi-axial loading, followed by the relationships between the permeability coefficients and axial strain, and the confining and seepage pressures were revealed accordingly. In addition, during the application of axial pressure, the whole process of seepage-stress coupling was divided into four stages, describing the permeability variation law of each stage and analyzing the causes of its formation. The exponential relationship between the permeability coefficient and volume strain was established, which can serve as a scientific basis for the determination of permeability coefficients in the analysis of the whole failure process of concrete seepage-stress coupling. Finally, this relationship formula was applied to numerical simulation to verify the applicability of the above experimental results in the numerical simulation analysis of concrete seepage-stress coupling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301179 | PMC |
http://dx.doi.org/10.3390/ma16124368 | DOI Listing |
Sci Rep
January 2025
School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P.R. China.
Hawthorn leave flavonoids (HLF) are widely used as an herb or dietary supplements for cardio-cerebrovascular diseases. However, its gastrointestinal absorption behavior and mechanism have not been disclosed. In this study, gastrointestinal absorption and its regulation of 4''-O-glucosylvitexin (GLV), 2''-O-rhamnosylvitexin (RHV), vitexin (VIT), rutin (RUT) and hyperoside (HP) in HLF were investigated using in vitro, in situ and in vivo models.
View Article and Find Full Text PDFSci Rep
January 2025
Young Researchers and Elite Club, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
Precise estimation of rock petrophysical parameters are seriously important for the reliable computation of hydrocarbon in place in the underground formations. Therefore, accurately estimation rock saturation exponent is necessary in this regard. In this communication, we aim to develop intelligent data-driven models of decision tree, random forest, ensemble learning, adaptive boosting, support vector machine and multilayer perceptron artificial neural network to predict rock saturation exponent parameter in terms of rock absolute permeability, porosity, resistivity index, true resistivity, and water saturation based on acquired 1041 field data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Petroleum Engineering, Ahvaz Faculty of Petroleum, Petroleum University of Technology, Ahvaz, Iran.
Smart water injection (SWI) is a practical enhanced oil recovery (EOR) technique that improves displacement efficiency on micro and macro scales by different physiochemical mechanisms. However, the development of a reliable smart tool to predict oil recovery factors is necessary to reduce the challenges related to experimental procedures. These challenges include the cost and complexity of experimental equipment and time-consuming experimental methods for obtaining the recovery factor (RF).
View Article and Find Full Text PDFACS Omega
December 2024
School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China.
3D Print Addit Manuf
October 2024
Design Department, Gemmological Institute, China University of Geosciences, Wuhan, P.R. China.
Direct ink writing of multiple mineral materials (M) coupled with simulation analysis is an optimization solution in accordance with low-carbon and sustainable manufacturing. It improves the ability to imitate natural biological iterative optimization, and accurately obtained data for geological model tests to effectively help prevent natural disasters. This article investigates the effects of equivalent materials on the direct ink writing and permeability behaviors through geological simulation models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!