Intrinsic Coherence Length Anisotropy in Nickelates and Some Iron-Based Superconductors.

Materials (Basel)

M. N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18, S. Kovalevskoy St., 620108 Ekaterinburg, Russia.

Published: June 2023

Nickelate superconductors, RANiO (where R is a rare earth metal and A = Sr, Ca), experimentally discovered in 2019, exhibit many unexplained mysteries, such as the existence of a superconducting state with (up to 18 K) in thin films and yet absent in bulk materials. Another unexplained mystery of nickelates is their temperature-dependent upper critical field, Bc2(T), which can be nicely fitted to two-dimensional (2D) models; however, the deduced film thickness, dsc,GL, exceeds the physical film thickness, dsc, by a manifold. To address the latter, it should be noted that 2D models assume that dsc is less than the in-plane and out-of-plane ground-state coherence lengths, dsc<ξab(0) and dsc<ξc(0), respectively, and, in addition, that the inequality ξc(0)<ξab(0) satisfies. Analysis of the reported experimental Bc2(T) data showed that at least one of these conditions does not satisfy for RANiO films. This implies that nickelate films are not 2D superconductors, despite the superconducting state being observed only in thin films. Based on this, here we propose an analytical three-dimensional (3D) model for a global data fit of in-plane and out-of-plane Bc2(T) in nickelates. The model is based on a heuristic expression for temperature-dependent coherence length anisotropy: γξ(T)=γξ(0)1-1a×TTc, where a>1 is a unitless free-fitting parameter. The proposed expression for γξ(T), perhaps, has a much broader application because it has been successfully applied to bulk pnictide and chalcogenide superconductors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302216PMC
http://dx.doi.org/10.3390/ma16124367DOI Listing

Publication Analysis

Top Keywords

film thickness
8
intrinsic coherence
4
coherence length
4
length anisotropy
4
anisotropy nickelates
4
nickelates iron-based
4
iron-based superconductors
4
superconductors nickelate
4
nickelate superconductors
4
superconductors ranio
4

Similar Publications

Localized Nanopore Fabrication in Silicon Nitride Membranes by Femtosecond Laser Exposure and Subsequent Controlled Breakdown.

ACS Appl Mater Interfaces

January 2025

Division of Micro and Nanosystems (MST), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.

Controlled breakdown has emerged as an effective method for fabricating solid-state nanopores in thin suspended dielectric membranes for various biomolecular sensing applications. On an unpatterned membrane, the site of nanopore formation by controlled breakdown is random. Nanopore formation on a specific site on the membrane has previously been realized using local thinning of the membrane by lithographic processes or laser-assisted photothermal etching under immersion in an aqueous salt solution.

View Article and Find Full Text PDF

A volatile heteroleptic open ruthenocene has been synthesised and characterised by NMR and single crystal X-ray diffraction. Using this compound as a precursor and oxygen as a co-reactant, a highly conductive Ru film has been deposited on Si with native oxide at 220 °C. Under the same deposition conditions, the film thickness obtained with the new compound has almost doubled compared to its homoleptic analogue.

View Article and Find Full Text PDF

Development of heat sealable film from tapioca and potato starch for application in edible packaging.

J Food Sci Technol

February 2025

Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand.

This study aimed to fabricate edible films from tapioca (T) and potato (P) starch, assessing their physicochemical properties and biodegradation across different ratios (T100P0, T70P30, T50P50, and T30P70). The films underwent evaluation for moisture content, thickness, water vapor permeability, and color values. T100P0 and T30P70 formulations exhibited the highest film transparency at 43.

View Article and Find Full Text PDF

Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.

View Article and Find Full Text PDF

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!