A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-Entropy Perovskite Thin Film in the Gd-Nd-Sm-La-Y-Co System: Deposition, Structure and Optoelectronic Properties. | LitMetric

Multicomponent equimolar perovskite oxides (ME-POs) have recently emerged as a highly promising class of materials with unique synergistic effects, making them well-suited for applications in such areas as photovoltaics and micro- and nanoelectronics. High-entropy perovskite oxide thin film in the (GdNdLaSmY)CoO (RECO, where RE = GdNdLaSmY, C = Co, and O = O) system was synthesized via pulsed laser deposition. The crystalline growth in an amorphous fused quartz substrate and single-phase composition of the synthesized film was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Surface conductivity and activation energy were determined using a novel technique implementing atomic force microscopy (AFM) in combination with current mapping. The optoelectronic properties of the deposited RECO thin film were characterized using UV/VIS spectroscopy. The energy gap and nature of optical transitions were calculated using the Inverse Logarithmic Derivative (ILD) and four-point resistance method, suggesting direct allowed transitions with altered dispersions. The narrow energy gap of RECO, along with its relatively high absorption properties in the visible spectrum, positions it as a promising candidate for further exploration in the domains of low-energy infrared optics and electrocatalysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302829PMC
http://dx.doi.org/10.3390/ma16124210DOI Listing

Publication Analysis

Top Keywords

thin film
12
high-entropy perovskite
8
optoelectronic properties
8
energy gap
8
perovskite thin
4
film
4
film gd-nd-sm-la-y-co
4
gd-nd-sm-la-y-co system
4
system deposition
4
deposition structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!