Background: Currently, the use of medicinal plants has increased. species have been used in several applications, including medicinal use and uses in cosmetics, foods and beverages. L. and are part of the Mediterranean diet in the form of aqueous infusions. Herein, we aimed to compare the secondary metabolites of the decoctions and two different extracts (methanolic and aqueous-glycerolic) of these two species, as well as their antioxidant capacity and trace metal levels.

Methods: Total phenolic, total flavonoid, total terpenes, total hydroxycinnamate, total flavonol, total anthocyanin contents and antioxidant/antiradical activity were determined, and GC/MS analysis was applied to identify and quantify phenolics and terpenoids. Trace metals were quantified with ICP-MS.

Results: Aqueous-glycerolic extracts demonstrated higher levels of total secondary metabolites, greater antioxidant potential and higher terpenoid levels than decoctions and methanolic extracts. Subsequently, the aqueous-glycerolic extract of a particularly high phenolic content was further analyzed applying targeted LC-MS/MS as the most appropriate analytic tool for the determination of the phenolic profile. Overall, twenty-two metabolites were identified. The potential contribution of infusions consumption to metal intake was additionally evaluated, and did not exceed the recommended daily intake.

Conclusions: Our results support the use of these two species in several food, cosmetic or pharmaceutical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304051PMC
http://dx.doi.org/10.3390/life13061416DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
12
trace metals
8
total
7
crete secondary
4
metabolites
4
metabolites trace
4
metals vitro
4
vitro antioxidant
4
antioxidant activities
4
activities background
4

Similar Publications

Reviewing the literature published up to October 2024.Sesterterpenoids are one of the most chemically diverse and biologically promising subgroup of terpenoids, the largest family of secondary metabolites. The present review article summarizes more than seven decades of studies on isolation and characterization of more than 1600 structurally novel sesterterpenoids, supplemented by biological, pharmacological, ecological, and geographic distribution data.

View Article and Find Full Text PDF

New approaches to secondary metabolite discovery from anaerobic gut microbes.

Appl Microbiol Biotechnol

January 2025

Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.

The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest.

View Article and Find Full Text PDF

Seed bacterization with siderophore-producing bacteria: a strategy to enhance growth and alkaloid content in Catharanthus roseus.

World J Microbiol Biotechnol

January 2025

Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.

Catharanthus roseus is a medicinal plant widely known for producing monoterpenoid indole alkaloids (MIAs), including therapeutic compounds such as vinblastine and vincristine, which are crucial for cancer treatment. However, the naturally low concentration of these alkaloids in plant tissues poses a significant challenge for large-scale production. This study explores the application of siderophore-producing bacteria for seed bacterization of Catharanthus roseus to enhance the production of MIAs, including vindoline, catharanthine, and vinblastine.

View Article and Find Full Text PDF

Drought stress poses a serious threat to agricultural productivity worldwide. This study investigated the mitigative effects of exogenous spermidine on drought stressed yarrow ( L.).

View Article and Find Full Text PDF

The utilization of chemical pesticides recovers 30%-40% of food losses. However, their application has also triggered a series of problems, including food safety, environmental pollution, pesticide resistance, and incidents of poisoning. Consequently, green pesticides are increasingly seen as viable alternatives to their chemical counterparts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!