Salinity is one of the major detrimental abiotic stresses at the forefront of deterring crop productivity globally. Although the exogenous application of phytohormones has formerly proven efficacious to plants, their effect on the moderately stress-tolerant crop "" remains elusive. To investigate this, seeds primed with methyl jasmonate (0; 10 and 15 μM MeJa) were exposed to salt (200 mM NaCl) stress, and their morpho-physiological, biochemical, and molecular attributes were measured. Salt stress significantly decreased shoot length and fresh weight by 50%, whereas dry weight and chlorophyll content were decreased by more than 40%. Furthermore, salt-stress-induced oxidative damage was evident by the formation of brown formazan spots (indicative of HO production) on sorghum leaves and a more than 30% increase in MDA content. However, priming with MeJa improved growth, increased chlorophyll content, and prevented oxidative damage under salt stress. While 15 µM MeJa maintained proline content to the same level as the salt-stressed samples, total soluble sugars were maintained under 10 µM MeJa, indicating a high degree of osmotic adjustment. Shriveling and thinning of the epidermis and xylem tissues due to salt stress was prevented by MeJa, followed by a more than 70% decrease in the Na/K ratio. MeJa also reversed the FTIR spectral shifts observed for salt-stressed plants. Furthermore, salt stress induced the expression of the jasmonic acid biosynthesis genes; and . In MeJa-primed plants, their expression was reduced, except for the transcript, which further increased by 67%. These findings suggest that MeJa conferred salt-stress tolerance to through osmoregulation and synthesis of JA-related metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299227PMC
http://dx.doi.org/10.3390/ijms241210368DOI Listing

Publication Analysis

Top Keywords

salt stress
16
oxidative damage
12
meja
8
priming meja
8
expression jasmonic
8
jasmonic acid
8
acid biosynthesis
8
biosynthesis genes
8
chlorophyll content
8
µm meja
8

Similar Publications

Soil salinization adversely impacts plant and soil health. While amendment with chemicals is not sustainable, the application of bioinoculants suffers from competition with indigenous microbes. Hence, microbiome-based rhizosphere engineering, focussing on acclimatization of rhizosphere microbiome under selection pressure to facilitate plant growth, exhibits promise.

View Article and Find Full Text PDF

Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.

View Article and Find Full Text PDF

Introduction: Melatonin significantly enhances the tolerance of plants to biotic and abiotic stress, and plays an important role in plant resistance to salt stress. However, its role and molecular mechanisms in eggplant salt stress resistance have been rarely reported. In previous studies, we experimentally demonstrated that melatonin can enhance the salt stress resistance of eggplants.

View Article and Find Full Text PDF

Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.

View Article and Find Full Text PDF

Rheum tanguticum, an endemic species from the Qinghai-Xizang Plateau, is a significant perennial and medicinal plant recognized for its robust resistance to abiotic stresses, including drought, cold, and salinity. To advance the understanding of stress-response mechanisms in R. tanguticum, this study aimed to establish a reliable set of housekeeping genes as references for normalizing RT-qPCR gene expression analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!