The kidneys and heart work together to balance the body's circulation, and although their physiology is based on strict inter dependence, their performance fulfills different aims. While the heart can rapidly increase its own oxygen consumption to comply with the wide changes in metabolic demand linked to body function, the kidneys physiology are primarily designed to maintain a stable metabolic rate and have a limited capacity to cope with any steep increase in renal metabolism. In the kidneys, glomerular population filters a large amount of blood and the tubular system has been programmed to reabsorb 99% of filtrate by reabsorbing sodium together with other filtered substances, including all glucose molecules. Glucose reabsorption involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane in the proximal tubular section; it also enhances bicarbonate formation so as to preserve the acid-base balance. The complex work of reabsorption in the kidney is the main factor in renal oxygen consumption; analysis of the renal glucose transport in disease states provides a better understanding of the renal physiology changes that occur when clinical conditions alter the neurohormonal response leading to an increase in glomerular filtration pressure. In this circumstance, glomerular hyperfiltration occurs, imposing a higher metabolic demand on kidney physiology and causing progressive renal impairment. Albumin urination is the warning signal of renal engagement over exertion and most frequently heralds heart failure development, regardless of disease etiology. The review analyzes the mechanisms linked to renal oxygen consumption, focusing on sodium-glucose management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298324PMC
http://dx.doi.org/10.3390/ijms24129957DOI Listing

Publication Analysis

Top Keywords

renal oxygen
12
oxygen consumption
12
renal
8
metabolic demand
8
oxygen demand
4
demand nephron
4
nephron function
4
glucose
4
function glucose
4
glucose friend
4

Similar Publications

Introduction: Cardiogenic shock (CS) is marked by substantial morbidity and mortality. The two major CS etiologies include heart failure (HF) and acute myocardial infarction (AMI). The utilization trends of mechanical circulatory support (MCS) and their clinical outcomes are not well described.

View Article and Find Full Text PDF

Objectives: This study aimed to develop a prediction model for the detection of early sepsis-associated acute kidney injury (SA-AKI), which is defined as AKI diagnosed within 48 hours of a sepsis diagnosis.

Design: A retrospective study design was employed. It is not linked to a clinical trial.

View Article and Find Full Text PDF

Boeravinone C ameliorates lipid accumulation and inflammation in diabetic kidney disease by activating PPARα signaling.

J Ethnopharmacol

January 2025

Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China. Electronic address:

Ethnopharmacological Relevance: The roots of Oxybaphus himalaicus Edgew. is a traditional Tibetan herbal medicine with kidney reinforcing and tonifying effects, which is commonly applied to treat nephritis. Boeravinone C has been identified as one of the primary constituents of O.

View Article and Find Full Text PDF

Background: Normothermic machine perfusion (NMP) provides a platform for kidney quality assessment. Donation after circulatory death (DCD) donor kidneys are associated with great ischemic injury and high intrarenal resistance (IRR). This experimental study aims to investigate the impact of different perfusion pressures on marginal kidney function and injury during NMP.

View Article and Find Full Text PDF

Renal ischemia-reperfusion (IR) induces tissue hypoxia, resulting in disrupted energy metabolism and heightened oxidative stress. These factors contribute to tubular cell damage, which is a leading cause of acute kidney injury (AKI) and can progress to chronic kidney disease (CKD). The excessive generation of reactive oxygen species (ROS) plays a crucial role in the pathogenesis of AKI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!