Understanding how nanoparticles' properties influence their cellular interactions is a bottleneck for improving the design of carriers. Macrophage polarization governs their active role in solving infections or tissue repair. To unravel the effect of carbohydrate-targeting mannose receptors on the macrophage surface, drug-free fucoidan/chitosan nanoparticles were functionalized using mannose (M) and mannan (Mn). Polyelectrolyte complex nanoparticles were obtained upon chitosan self-assembly using fucoidan. The functionalized nanoparticles were characterized in terms of their physicochemical characteristics, chemical profile, and carbohydrate orientation. The nanoparticles varied in size from 200 to 400 nm, were monodisperse, and had a stable negative zeta potential with a low aggregation tendency. The nonfunctionalized and functionalized nanoparticles retained their properties for up to 12 weeks. Cell viability and internalization studies were performed for all the designed nanoparticles in the THP-1 monocytes and THP-1-differentiated macrophages. The expression of the mannose receptor was verified in both immune cells. The carbohydrate-functionalized nanoparticles led to their activation and the production of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and tumour necrosis factor (TNF)-α. Both M- and Mn-coated nanoparticles modulate macrophages toward an M1-polarized state. These findings demonstrate the tailoring of these nanoplatforms to interact and alter the macrophage phenotype in vitro and represent their therapeutic potential either alone or in combination with a loaded drug for future studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298651 | PMC |
http://dx.doi.org/10.3390/ijms24129908 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!