Teeth include mesenchymal stem cells (MSCs), which are multipotent cells that promote tooth growth and repair. Dental tissues, specifically the dental pulp and the dental bud, constitute a relevant source of multipotent stem cells, known as dental-derived stem cells (d-DSCs): dental pulp stem cells (DPSCs) and dental bud stem cells (DBSCs). Cell treatment with bone-associated factors and stimulation with small molecule compounds are, among the available methods, the ones who show excellent advantages promoting stem cell differentiation and osteogenesis. Recently, attention has been paid to studies on natural and non-natural compounds. Many fruits, vegetables, and some drugs contain molecules that can enhance MSC osteogenic differentiation and therefore bone formation. The purpose of this review is to examine research work over the past 10 years that has investigated two different types of MSCs from dental tissues that are attractive targets for bone tissue engineering: DPSCs and DBSCs. The reconstruction of bone defects, in fact, is still a challenge and therefore more research is needed; the articles reviewed are meant to identify compounds useful to stimulate d-DSC proliferation and osteogenic differentiation. We only consider the results of the research which is encouraging, assuming that the mentioned compounds are of some importance for bone regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298133 | PMC |
http://dx.doi.org/10.3390/ijms24129897 | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China.
Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.
Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!