L-polylactic acid (PLA), a semi-crystalline aliphatic polyester, is one of the most manufactured biodegradable plastics worldwide. The objective of the study was to obtain L-polylactic acid (PLA) from lignocellulosic plum biomass. Initially, the biomass was processed via pressurized hot water pretreatment at a temperature of 180 °C for 30 min at 10 MPa for carbohydrate separation. Cellulase and the beta-glucosidase enzymes were then added, and the mixture was fermented with ATCC 7469. The resulting lactic acid was concentrated and purified after ammonium sulphate and n-butanol extraction. The productivity of L-lactic acid was 2.04 ± 0.18 g/L/h. Then, the PLA was synthesized in two stages. Firstly, lactic acid was subjected to azeotropic dehydration at 140 °C for 24 h in the presence of xylene, using SnCl (0.4 wt.%) as a catalyst, resulting in lactide (CPLA). Secondly, microwave-assisted polymerization was carried out at 140 °C for 30 min with 0.4 wt.% SnCl. The resulting powder was purified with methanol to produce PLA with 92.1% yield. The obtained PLA was confirmed using electrospray ionization mass spectrometry, nuclear magnetic resonance, thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. Overall, the resulting PLA can successfully replace the traditional synthetic polymers used in the packaging industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298539 | PMC |
http://dx.doi.org/10.3390/ijms24129817 | DOI Listing |
Polymers (Basel)
November 2024
Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania.
ACS Appl Mater Interfaces
June 2024
Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy.
Electrospun (e-spun) fibers are generally regarded as powerful tools for cell growth in tissue regeneration applications, and the possibility of imparting functional properties to these materials represents an increasingly pursued goal. We report herein the preparation of hybrid materials in which an e-spun d,l-polylactic acid matrix, to which chitosan or crystalline nanocellulose was added to improve hydrophilicity, was loaded with different amounts of silver(0) nanoparticles (AgNP) generated onto chestnut shell lignin (CSL) (AgNP@CSL). A solvent-free mechanochemical method was used for efficient (85% of the theoretical value by XRD analysis) Ag(0) production from the reduction of AgNO by lignin.
View Article and Find Full Text PDFBiology (Basel)
November 2023
School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
As highlighted by the 'Global Burden of Disease Study 2019' conducted by the World Health Organization, ensuring fair access to medical care through affordable and targeted treatments remains crucial for an ethical global healthcare system. Given the escalating demand for advanced and urgently needed solutions in regenerative bone procedures, the critical role of biopolymers emerges as a paramount necessity, offering a groundbreaking avenue to address pressing medical needs and revolutionize the landscape of bone regeneration therapies. Polymers emerge as excellent solutions due to their versatility, making them reliable materials for 3D printing.
View Article and Find Full Text PDFJ Funct Biomater
October 2023
1st Orthopaedic Department, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
: Infection of orthopaedic implants after internal fixation of bone fractures remains a major complication with occasionally devastating consequences. Recent studies have reported that the use of absorbable materials, instead of metallic ones, may lead to a lower incidence of postoperative infection. In this experimental pre-clinical animal study, we compared the infection rate between absorbable implants consisting of copolymers composed from trimethylene carbonate, L-polylactic acid, and D, L-polylactic acid monomers, and titanium implants after the inoculation of a pathogenic microorganism.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2023
Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
L-poly(lactic acid) (PLLA) is a biodegradable material with multiple biomedical application potentials, especially as a membrane for guided bone regeneration. In terms of its low strength and poor osteogenic activity, improving these two properties is the key to resolve the limitations of PLLA for bone-associated applications. Herein, an orientation-strengthening technology (OST) was developed to reinforce PLLA's mechanical strength by introducing biocompatible β-tricalcium phosphate (β-TCP) to improve the crystallinity of PLLA, allowing for the formation of a highly oriented architecture to acquire an advanced membrane with high mechanical property.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!