Mangosteen pericarps (MP) often end up as agricultural waste despite being rich in powerful natural antioxidants such as anthocyanins and xanthones. This study compared the effect of different drying processes and times on phenolic compounds and antioxidant activities of MP. Fresh MP were subjected to 36 and 48 h of freeze-drying (-44 ± 1 °C) and oven-drying (45 ± 1 °C), and 30 and 40 h of sun-drying (31 ± 3 °C). The samples were analyzed for anthocyanins composition, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activities, and color characteristics. Analysis of liquid chromatography-mass spectrometry (LC-MS) with electrospray ionization identified two anthocyanins in MP: cyanidin-3--sophoroside and cyanidin-3--glucoside. Overall, the drying process, time, and their interactions significantly ( < 0.05) influenced the phenolic compounds, antioxidant activities, and color in MP extracts. Both freeze-drying after 36 h (FD36) and 48 h (FD48) possessed significantly ( < 0.05) higher total anthocyanins (2.1-2.2 mg/g) than other samples. However, FD36 was associated with significantly ( < 0.05) higher TPC (~94.05 mg GAE/g), TFC (~621.00 mg CE/g), and reducing power (~1154.50 μmol TE/g) compared to FD48. Moreover, FD36 is more efficient for industrial applications due to less time and energy consumption. Subsequently, obtained dried MP extracts could be further utilized as an alternative to synthetic food colorants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297665 | PMC |
http://dx.doi.org/10.3390/foods12122351 | DOI Listing |
Sci Rep
December 2024
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.
The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.
View Article and Find Full Text PDFSci Rep
December 2024
The University of Trans-Disciplinary Health Sciences and Technology (TDU), 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru, 560 064, India.
Triphala is a traditional Ayurvedic herbal formulation composed of three fruits: amla (Phyllanthus emblica), bibhitaki (Terminalia bellerica), and haritaki (Terminalia chebula). Triphala is a potent Ayurvedic remedy that promotes digestion, detoxification, and overall wellness, while also providing antioxidant benefits through its trio of nutrient-rich fruits. In order to elucidate the individual contributions of the three ingredients of Triphala from molecular perspective, the individual ingredients were used for the untargeted LCMS/MS analysis.
View Article and Find Full Text PDFChem Biodivers
December 2024
Regional University of Blumenau: Universidade Regional de Blumenau, Natural Sciences, Antônio da Veiga, 140, 89012-900, Blumenau, BRAZIL.
This study evaluated the phytochemicals from extracts of Psidium guajava L. leaves (PGE), and its antioxidant and photoprotective effects. PGE showed constant production of total phenolics and maintained high antioxidant capacity across seasons and years.
View Article and Find Full Text PDFCell Biol Int
December 2024
College of Veterinary Medicine, Jilin University, Changchun, China.
Melatonin (MT), an endogenous hormone secreted by pineal gland, has the sedative, anti-inflammatory and antioxidant functions. However, there are few studies on whether MT affects the proliferation and differentiation of antler chondrocytes. The present study investigated the influences of MT on the proliferation and differentiation of antler chondrocytes, explored its regulation on runt-related transcription factor 2 (RUNX2), NOTCH1 and sonic hedgehog (SHH) signaling, and elucidated their interplays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!