The genus of the family comprises the largest group of geminiviruses. Begomoviruses are transmitted by the whitefly complex () and infect dicotyledonous plants in tropical and subtropical regions. The list of begomoviruses is continuously increasing as a result of improvements in the methods for identification, especially from weed plants, which are considered a source of new viruses and reservoirs of economically important viruses but are often neglected during diversity studies. L. weed plants (yellow-flowered pea) with varicose veins and discoloration of the leaves were found. Amplified genomic DNA through rolling circular amplification was subjected to PCR analysis for the detection of the viral genome and associated DNA-satellites (alphasatellites and betasatellites). A full-length sequence (2.8 kb) of a monopartite begomovirus clone was determined; however, we could not find any associated DNA satellites. The amplified full-length clone of (RoLCuV) reserved all the characteristics and features of an Old World (OW) monopartite begomovirus. Furthermore, it is the first time it has been reported from a new weed host, yellow-flowered pea. Rolling circle amplification and polymerase chain reaction analysis of associated DNA satellites, alphasatellite, and betasatellite, were frequently accomplished but unable to amplify from the begomovirus-infected samples, indicating the presence of only monopartite Old World begomovirus. It is observed that RoLCuV has the capability to infect different hosts individually without the assistance of any DNA satellite component. Recombination in viruses is also a source of begomovirus infection in different hosts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298065PMC
http://dx.doi.org/10.3390/genes14061221DOI Listing

Publication Analysis

Top Keywords

monopartite begomovirus
12
begomovirus infection
8
weed plants
8
yellow-flowered pea
8
associated dna
8
dna satellites
8
begomovirus
5
unveiling newly
4
newly identified
4
identified host
4

Similar Publications

Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein.

Mol Plant Pathol

January 2025

Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdV), revealing a dynamic role for TYLCGdV C4.

View Article and Find Full Text PDF

The begomoviral V2 protein is known to be multifunctional, including its interaction with and inhibition of CYP1, a papain-like cysteine protease (PLCP). However, the effect of this interaction on viral pathogenicity remains unclear. Cotton leaf curl Multan virus (CLCuMuV), a typical monopartite begomovirus associated with a betasatellite, is one of the main pathogens responsible for cotton leaf curl disease.

View Article and Find Full Text PDF

Cotton leaf curl disease (CLCuD) is a major constraint for production of cotton (Gossypium sp.) in Northwest India. CLCuD is caused by a monopartite, circular ssDNA virus belonging to the genus Begomovirus in association with betasatellites and alphasatellites, and ttransmitted by a whitefly vector (Bemisia tabaci).

View Article and Find Full Text PDF

The tomato Ty-6 gene conferring resistance against begomoviruses has been cloned and shown to be a variant of DNA polymerase delta subunit 1. Ty-6 is a major resistance gene of tomato that provides resistance against monopartite and bipartite begomoviruses. The locus was previously mapped on chromosome 10, and in this study, we fine-mapped Ty-6 to a region of 47 kb, including four annotated candidate genes.

View Article and Find Full Text PDF

Transcriptional Modulation of Plant Defense Genes by a Bipartite Begomovirus Promotes the Performance of Its Whitefly Vector.

Viruses

October 2024

Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.

The majority of plant viruses rely on insect vectors for inter-plant transmission. Amid virus transmission, vector-borne viruses such as begomoviruses may significantly modulate host plants in various ways and, in turn, plant palatability to insect vectors. While many case studies on monopartite begomoviruses are available, bipartite begomoviruses are understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!