Quantitative Trait Loci (QTL) mapping has been thoroughly used in peanut genetics and breeding in spite of the narrow genetic diversity and the segmental tetraploid nature of the cultivated species. QTL mapping is helpful for identifying the genomic regions that contribute to traits, for estimating the extent of variation and the genetic action (i.e., additive, dominant, or epistatic) underlying this variation, and for pinpointing genetic correlations between traits. The aim of this paper is to review the recently published studies on QTL mapping with a particular emphasis on mapping populations used as well as traits related to kernel quality. We found that several populations have been used for QTL mapping including interspecific populations developed from crosses between synthetic tetraploids and elite varieties. Those populations allowed the broadening of the genetic base of cultivated peanut and helped with the mapping of QTL and identifying beneficial wild alleles for economically important traits. Furthermore, only a few studies reported QTL related to kernel quality. The main quality traits for which QTL have been mapped include oil and protein content as well as fatty acid compositions. QTL for other agronomic traits have also been reported. Among the 1261 QTL reported in this review, and extracted from the most relevant studies on QTL mapping in peanut, 413 (~33%) were related to kernel quality showing the importance of quality in peanut genetics and breeding. Exploiting the QTL information could accelerate breeding to develop highly nutritious superior cultivars in the face of climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298601PMC
http://dx.doi.org/10.3390/genes14061176DOI Listing

Publication Analysis

Top Keywords

qtl mapping
20
kernel quality
12
qtl
11
quantitative trait
8
trait loci
8
peanut genetics
8
genetics breeding
8
studies qtl
8
mapping
7
traits
6

Similar Publications

Genetic mapping and validation of QTL controlling fruit diameter in cucumber.

BMC Plant Biol

December 2024

Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China.

Fruit diameter is one of important agronomy traits that has greatly impacts fruit yield and commercial value in cucumber (Cucumis sativus L.). Hence, we preliminary mapping of fruit diameter was conducted to refine its genetic locus.

View Article and Find Full Text PDF

OsWRKY49 on qAT5 positively regulates alkalinity tolerance at the germination stage in Oryza sativa L. ssp. japonica.

Theor Appl Genet

December 2024

Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.

Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important.

View Article and Find Full Text PDF

Identification of genetic loci for seed shattering in Italian ryegrass (Lolium multiflorum Lam.).

Theor Appl Genet

December 2024

Division of Feed and Livestock Research, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan.

We have identified a unique genetic locus for seed shattering in Italian ryegrass that has an exceedingly large effect and shows partial dominance for reduced seed shattering. Genetic improvement of seed retention in forage grasses can contribute to improving their commercial seed production. The objective of this study was to identify the genetic loci responsible for seed shattering in Italian ryegrass (Lolium multiflorum Lam.

View Article and Find Full Text PDF

Identification of superior haplotypes and candidate gene for seed size-related traits in soybean ( L.).

Mol Breed

January 2025

Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China.

Unlabelled: Seed size is an economically important trait that directly determines the seed yield in soybean. In the current investigation, we used an integrated strategy of linkage mapping, association mapping, haplotype analysis and candidate gene analysis to determine the genetic makeup of four seed size-related traits viz., 100-seed weight (HSW), seed area (SA), seed length (SL), and seed width (SW) in soybean.

View Article and Find Full Text PDF

Background: Early-maturity cotton varieties have the potential to be cultivated in a wider geographical area, extending as far north as 46 °N in China, and confer to address the issue of competition for land between grain and cotton by reducing their whole growth period (WGP). Therefore, it is of great importance to develop cotton varieties with comprehensive early maturity and high yield following investigating the regulatory mechanism underlying early maturity and identifying early maturity-related genes.

Results: In this study, 'SCRC19' and 'SCRC21', two excellent cultivars with significantly different WGP, along with their recombinant inbred lines (RILs) consisting of 150 individuals were re-sequenced, yielding 4,092,677 high-quality single nucleotide polymorphisms (SNPs) and 794 bin markers across 26 chromosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!