This work aims to study the interplay between the Wilson-Cowan model and connection matrices. These matrices describe cortical neural wiring, while Wilson-Cowan equations provide a dynamical description of neural interaction. We formulate Wilson-Cowan equations on locally compact Abelian groups. We show that the Cauchy problem is well posed. We then select a type of group that allows us to incorporate the experimental information provided by the connection matrices. We argue that the classical Wilson-Cowan model is incompatible with the small-world property. A necessary condition to have this property is that the Wilson-Cowan equations be formulated on a compact group. We propose a -adic version of the Wilson-Cowan model, a hierarchical version in which the neurons are organized into an infinite rooted tree. We present several numerical simulations showing that the -adic version matches the predictions of the classical version in relevant experiments. The -adic version allows the incorporation of the connection matrices into the Wilson-Cowan model. We present several numerical simulations using a neural network model that incorporates a -adic approximation of the connection matrix of the cat cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297397 | PMC |
http://dx.doi.org/10.3390/e25060949 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.
Exciton condensation, the Bose-Einstein-like condensation of quasibosonic particle-hole pairs, has been the subject of much theoretical and experimental interest and holds promise for ultraenergy-efficient technologies. Recent advances in bilayer systems, such as transition metal dichalcogenide heterostructures, have brought us closer to the experimental realization of exciton condensation without the need for high magnetic fields. In this perspective, we explore progress toward understanding and realizing exciton condensation, with a particular focus on the characteristic theoretical signature of exciton condensation: an eigenvalue greater than one in the particle-hole reduced density matrix, which signifies off-diagonal long-range order.
View Article and Find Full Text PDFRecent advances in near-field interference detection, inspired by the non-Hermitian coupling-induced directional sensing of Ormia ochracea, have demonstrated the potential of paired semiconductor nanowires for compact light field detection without optical filters. However, practical implementation faces significant challenges including limited active area, architectural scaling constraints, and incomplete characterization of angular and polarization information. Here, we demonstrate a filterless vector light field photodetector, leveraging the angle- and polarization-sensitive near-field interference of non-Hermitian semiconductor nanostructures.
View Article and Find Full Text PDFNeuroimage
January 2025
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan. Electronic address:
The association between the human brain and gut microbiota, known as the "brain-gut-microbiota axis", is involved in the neuropathological mechanisms of schizophrenia (SZ); however, its association patterns and correlations with symptom severity and neurocognition are still largely unknown. In this study, 43 SZ patients and 55 normal controls (NCs) were included, and resting-state functional magnetic resonance imaging (rs-fMRI) and gut microbiota data were acquired for each participant. First, the brain features of brain images and functional brain networks were computed from rs-fMRI data; the gut features of gut microbiota abundance and the gut microbiota network were computed from gut microbiota data.
View Article and Find Full Text PDFData Brief
February 2025
Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Incorporating ecological connectivity into spatial conservation planning is increasingly recognized as a key strategy to facilitate species movements, especially under changing environmental conditions. However, obtaining connectivity data is challenging, especially in the marine realm. Sea currents are essential for exploring marine structural connectivity, but transforming sea current data into spatial connectivity matrices involves complex and resource-intensive processing steps to ensure accuracy and usability.
View Article and Find Full Text PDFFront Neurosci
January 2025
Center of Excellence in Intelligent Engineering Systems (CEIES), Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.
Introduction: Excessive alcohol consumption negatively impacts physical and psychiatric health, lifestyle, and societal interactions. Chronic alcohol abuse alters brain structure, leading to alcohol use disorder (AUD), a condition requiring early diagnosis for effective management. Current diagnostic methods, primarily reliant on subjective questionnaires, could benefit from objective measures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!