Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
When traditional super-resolution reconstruction methods are applied to infrared thermal images, they often ignore the problem of poor image quality caused by the imaging mechanism, which makes it difficult to obtain high-quality reconstruction results even with the training of simulated degraded inverse processes. To address these issues, we proposed a thermal infrared image super-resolution reconstruction method based on multimodal sensor fusion, aiming to enhance the resolution of thermal infrared images and rely on multimodal sensor information to reconstruct high-frequency details in the images, thereby overcoming the limitations of imaging mechanisms. First, we designed a novel super-resolution reconstruction network, which consisted of primary feature encoding, super-resolution reconstruction, and high-frequency detail fusion subnetwork, to enhance the resolution of thermal infrared images and rely on multimodal sensor information to reconstruct high-frequency details in the images, thereby overcoming limitations of imaging mechanisms. We designed hierarchical dilated distillation modules and a cross-attention transformation module to extract and transmit image features, enhancing the network's ability to express complex patterns. Then, we proposed a hybrid loss function to guide the network in extracting salient features from thermal infrared images and reference images while maintaining accurate thermal information. Finally, we proposed a learning strategy to ensure the high-quality super-resolution reconstruction performance of the network, even in the absence of reference images. Extensive experimental results show that the proposed method exhibits superior reconstruction image quality compared to other contrastive methods, demonstrating its effectiveness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297407 | PMC |
http://dx.doi.org/10.3390/e25060914 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!