Methyl gallate (MG), which is a gallotannin widely found in plants, is a polyphenol used in traditional Chinese phytotherapy to alleviate several cancer symptoms. Our studies provided evidence that MG is capable of reducing the viability of HCT116 colon cancer cells, while it was found to be ineffective on differentiated Caco-2 cells, which is a model of polarized colon cells. In the first phase of treatment, MG promoted both early ROS generation and endoplasmic reticulum (ER) stress, sustained by elevated PERK, Grp78 and CHOP expression levels, as well as an upregulation in intracellular calcium content. Such events were accompanied by an autophagic process (16-24 h), where prolonging the time (48 h) of MG exposure led to cellular homeostasis collapse and apoptotic cell death with DNA fragmentation and p53 and γH2Ax activation. Our data demonstrated that a crucial role in the MG-induced mechanism is played by p53. Its level, which increased precociously (4 h) in MG-treated cells, was tightly intertwined with oxidative injury. Indeed, the addition of N-acetylcysteine (NAC), which is a ROS scavenger, counteracted the p53 increase, as well as the MG effect on cell viability. Moreover, MG promoted p53 accumulation into the nucleus and its inhibition by pifithrin-α (PFT-α), which is a negative modulator of p53 transcriptional activity, enhanced autophagy, increased the LC3-II level and inhibited apoptotic cell death. These findings provide new clues to the potential action of MG as a possible anti-tumor phytomolecule for colon cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295688PMC
http://dx.doi.org/10.3390/antiox12061292DOI Listing

Publication Analysis

Top Keywords

colon cancer
12
oxidative injury
8
hct116 colon
8
cancer cells
8
apoptotic cell
8
cell death
8
p53
6
cells
5
deadly liaison
4
liaison oxidative
4

Similar Publications

Radioresistance in rectal cancer: can nanoparticles turn the tide?

Mol Cancer

January 2025

i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal.

Rectal cancer accounts for over 35% of the worldwide colorectal cancer burden representing a distinctive subset of cancers from those arising in the colon. Colorectal cancers exhibit a continuum of traits that differ with their location in the large intestine. Due to anatomical and molecular differences, rectal cancer is treated differently from colon cancer, with neoadjuvant chemoradiotherapy playing a pivotal role in the control of the locally advanced disease.

View Article and Find Full Text PDF

Prostaglandin E and Akt promote stemness in Apc mutant Dclk1+ cells to give rise to colitis-associated cancer.

Cell Mol Gastroenterol Hepatol

January 2025

Department of Medicine, University of Western Ontario, London, Ontario N6A 5W9, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada. Electronic address:

Background And Aims: Loss of the tumor suppressor gene Apc in Lgr5+ intestinal stem cells results in aberrant Wnt signaling and colonic tumorigenesis. In the setting of injury, however, we and others have also shown that non-stem cells can also give rise to colonic tumors. The mechanism by which inflammation leads to cellular plasticity and cancer, however, remains largely unknown.

View Article and Find Full Text PDF

Colon cancer, as a highly prevalent malignant tumor globally, poses a significant threat to human health. In recent years, ferroptosis and cuproptosis, as two novel forms of cell death, have attracted widespread attention for their potential roles in the development and treatment of colon cancer. However, the investigation into the subtypes and their impact on the survival of colon cancer patients remains understudied.

View Article and Find Full Text PDF

Functional characterization of novel anti-DEFA5 monoclonal antibody clones 1A8 and 4F5 in inflammatory bowel disease colitis tissues.

Inflamm Res

January 2025

Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd, Nashville, TN, USA.

Background: The aberrant expression of α defensin 5 (DEFA5) protein in colonic inflammatory bowel diseases (IBDs) underlies the distinct pathogenesis of Crohn's colitis (CC). It can serve as a biomarker for differentiating CC from Ulcerative colitis (UC), particularly in Indeterminate colitis (IC) cases into UC and CC. We evaluated the specificity of commercially available anti-DEFA5 antibodies, emphasizing the need to further validate their appropriateness for a given application and highlighting the necessity for novel antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!