The Arsenal of Species against Oxidants.

Antioxidants (Basel)

Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France.

Published: June 2023

Reactive oxygen species (ROS) are byproducts of oxygen metabolism produced by virtually all organisms living in an oxic environment. ROS are also produced by phagocytic cells in response to microorganism invasion. These highly reactive molecules can damage cellular constituents (proteins, DNA, and lipids) and exhibit antimicrobial activities when present in sufficient amount. Consequently, microorganisms have evolved defense mechanisms to counteract ROS-induced oxidative damage. are diderm bacteria form the phylum. This genus is diverse, encompassing both free-living non-pathogenic bacteria as well as pathogenic species responsible for leptospirosis, a widespread zoonotic disease. All leptospires are exposed to ROS in the environment, but only pathogenic species are well-equipped to sustain the oxidative stress encountered inside their hosts during infection. Importantly, this ability plays a pivotal role in virulence. In this review, we describe the ROS encountered by in their different ecological niches and outline the repertoire of defense mechanisms identified so far in these bacteria to scavenge deadly ROS. We also review the mechanisms controlling the expression of these antioxidants systems and recent advances in understanding the contribution of Peroxide Stress Regulators in adaptation to oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294975PMC
http://dx.doi.org/10.3390/antiox12061273DOI Listing

Publication Analysis

Top Keywords

defense mechanisms
8
pathogenic species
8
oxidative stress
8
ros
5
arsenal species
4
species oxidants
4
oxidants reactive
4
reactive oxygen
4
oxygen species
4
species ros
4

Similar Publications

Subcellular spatial regulation of immunity-induced phosphorylation of RIN4 links PAMP-triggered immunity to Exo70B1.

Front Plant Sci

December 2024

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States.

RIN4 is a crucial regulator of plant immunity, playing a role in both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). While the impact of post-translational modifications (PTMs) on RIN4 has been extensively studied, their specific effects on plant immune response regulation and the underlying mechanisms have remained unclear. In this study, we investigated the phosphorylation of RIN4 at threonine-166 (RIN4) in transgenic lines expressing various RIN4 variants.

View Article and Find Full Text PDF

Roses () are among the most cherished ornamental plants globally, yet they are highly susceptible to infections by , the causative agent of gray mold disease. Here we inoculated the resistant rose variety 'Yellow Leisure Liness' with to investigate its resistance mechanisms against gray mold disease. Through transcriptome sequencing, we identified 578 differentially expressed genes (DEGs) that were significantly upregulated at 24, 48, and 72 hours post-inoculation, with these genes significantly enriched for three defense response-related GO terms.

View Article and Find Full Text PDF

Middle ear biofilm and sudden deafness - a light and transmission electron microscopy study.

Front Neurol

December 2024

Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.

Background: There still exists controversy about whether the healthy human middle ear mucosa is sterile or if it may harbor a diverse microbiome. Considering the delicacy of the human round window membrane (RWM), different mechanisms may exist for avoiding inner ear pathogen invasion causing sensorineural deafness. We re-analyzed archival human RWMs using light and transmission electron microscopy after decalcification to determine if bacteria are present in clinically normal human middle ears.

View Article and Find Full Text PDF

Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure.

Front Neurosci

December 2024

Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.

Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs.

View Article and Find Full Text PDF

Disulfide bonds-driven assembly and structural complexity of PTX3: High-resolution structures insights into multimeric architecture.

Int J Biol Macromol

December 2024

Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. Electronic address:

Pentraxin-3 (PTX3) is a multifunctional pattern-recognition molecule that is essential for immune defense, pathogen recognition, and complement activation. PTX3 is stored as a monomer in neutrophil granules, and assembles into higher-order oligomers upon immune activation, thereby enhancing its antimicrobial function. The mechanism underlying this assembly remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!