AI Article Synopsis

  • Human respiratory syncytial virus (hRSV) impacts over 33 million people annually, yet there are no approved treatments or vaccines.
  • The researchers developed a genetic network (HPI-GWGEN) from big data to identify significant pathways and biomarkers related to hRSV infection, focusing on targets like TRAF6 and STAT3.
  • They used a deep neural network model to predict potential molecular drugs, ultimately selecting combinations of acitretin, RS-67333, and phenformin as promising candidates for therapy against hRSV.

Article Abstract

Human respiratory syncytial virus (hRSV) affects more than 33 million people each year, but there are currently no effective drugs or vaccines approved. In this study, we first constructed a candidate host-pathogen interspecies genome-wide genetic and epigenetic network (HPI-GWGEN) via big-data mining. Then, we employed reversed dynamic methods via two-side host-pathogen RNA-seq time-profile data to prune false positives in candidate HPI-GWGEN to obtain the real HPI-GWGEN. With the aid of principal-network projection and the annotation of KEGG pathways, we can extract core signaling pathways during hRSV infection to investigate the pathogenic mechanism of hRSV infection and select the corresponding significant biomarkers as drug targets, i.e., TRAF6, STAT3, IRF3, TYK2, and MAVS. Finally, in order to discover potential molecular drugs, we trained a DNN-based DTI model by drug-target interaction databases to predict candidate molecular drugs for these drug targets. After screening these candidate molecular drugs by three drug design specifications simultaneously, i.e., regulation ability, sensitivity, and toxicity. We finally selected acitretin, RS-67333, and phenformin to combine as a potential multimolecule drug for the therapeutic treatment of hRSV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295364PMC
http://dx.doi.org/10.3390/biomedicines11061531DOI Listing

Publication Analysis

Top Keywords

hrsv infection
12
molecular drugs
12
genetic epigenetic
8
biomarkers drug
8
human respiratory
8
respiratory syncytial
8
syncytial virus
8
drug targets
8
candidate molecular
8
drug
5

Similar Publications

Background: Respiratory syncytial virus (RSV) infection in the first year of life has been linked with an increased risk for asthma. Some propose that RSV-induced inflammation leads to lasting airway changes, while others contend that RSV bronchiolitis is a marker for underlying predisposition. Social distancing adopted during the COVID-19 pandemic has led to a dramatic reduction in RSV activity, providing an unexpected opportunity to investigate this debate.

View Article and Find Full Text PDF

Background: Respiratory syncytial virus (hRSV) infections primarily cause acute respiratory illness and pediatric hospitalizations. We examined the hRSV molecular epidemiology in a pediatric cohort over a 4-year period and described the interrelationship with clinical data.

Methods: A cross-sectional study was conducted from 2014 to 2017 on children with acute respiratory illness.

View Article and Find Full Text PDF

Background: Lower respiratory tract infections (LRTIs) are one of the leading causes of hospital admissions among children. In this study, we aimed to describe the epidemiological characteristics of viral pathogens associated with LRTIs in hospitalized children in Yan'an; this has yet to be reported in the literature and may guide public health interventions and resource allocation in this region.

Methods: Between June 2021 and May 2023, we conducted a retrospective analysis of the results of viral detection using oral pharyngeal swabs from 4565 children with LRTIs in the Inpatient Department of Yan'an University Affiliated Hospital.

View Article and Find Full Text PDF

Interaction of Human Respiratory Syncytial Virus (HRSV) Matrix Protein with Resveratrol Shows Antiviral Effect.

Int J Mol Sci

November 2024

Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil.

The respiratory syncytial virus (RSV) matrix protein plays key roles in the virus life cycle and is essential for budding, as it stimulates the optimal membrane curvature necessary for the emergence of viral particles. Resveratrol, a polyphenol (3,4',5-trihydroxy-trans-stilbene) produced by plants, exhibits pharmacological effects, including anti-inflammatory and antiviral activities. In this study, resveratrol was tested in HEp-2 (Epidermoid carcinoma of the larynx cell) cells for its post-infection effects, and recombinant M protein was produced to characterize the biophysical mechanisms underlying this interaction.

View Article and Find Full Text PDF

Background: Human Respiratory Syncytial Virus (HRSV) is a primary cause of severe pediatric respiratory infections, particularly in infants and young children, often resulting in hospitalization. The virus possesses a high degree of mutagenic potential, contributing to significant antigenic diversity, which complicates immune responses and poses challenges for vaccine development and disease management. This study was conducted in Jordan from 2022 to 2023 to epidemiologically determine the prevalence and molecular characteristics of RSV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!