Many clinical and consumer electrocardiogram (ECG) devices collect fewer electrodes than the standard twelve-lead ECG and either report less information or employ algorithms to reconstruct a full twelve-lead signal. We assessed the optimal electrode selection and number that minimizes redundant information collection while maximizing reconstruction accuracy. We employed a validated deep learning model to reconstruct ECG signals from 250 different patients in the PTB database. Different numbers and combinations of electrodes were removed from the ECG before reconstruction to measure the effect of electrode inclusion on reconstruction accuracy. The Left Leg (LL) electrode registered the largest drop in average reconstruction accuracy, from an R2 of 0.836 when the LL was included to 0.737 when excluded. Additionally, we conducted a correlation analysis to identify leads that behave similarly. We demonstrate that there exists a high correlation between leads I, II, aVL, aVF, V4, V5, and V6, which all occupy the bottom right quadrant in an ECG axis interpretation, and likely contain redundant information. Based on our analysis, we recommend the prioritization of electrodes RA, LA, LL, and V3 in any future lead collection devices, as they appear most important for full ECG reconstruction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295150PMC
http://dx.doi.org/10.3390/biomedicines11061526DOI Listing

Publication Analysis

Top Keywords

reconstruction accuracy
12
electrode selection
8
selection number
8
ecg reconstruction
8
ecg
6
reconstruction
5
electrode
4
number reconstructing
4
reconstructing standard
4
standard twelve
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!