Osteosarcoma is an aggressive malignant neoplasm, and it is of great significance to the fabrication and investigation of the anti-tumor mechanism of nanomedicine in the treatment of osteosarcoma. Herein, a cinnamaldehyde polymeric prodrug micelle with pH-sensitive charge-conversion ability (mPEG--P(C7--CA)) was fabricated, and the anti-osteosarcoma mechanism of mPEG--P(C7--CA) micelle was investigated. mPEG--P(C7--CA) micelles were prepared by self-assembly method, and their diameter was 227 nm. mPEG--P(C7--CA) micelles could regulate the cell cycle and inhibit the proliferation of 143B cells, which was demonstrated by flow cytometry analysis, CCK-8 assay and 5-Ethynyl-2'-deoxyuridine (EdU) staining. The wound-healing assay and transwell assay showed that mPEG--P(C7--CA) micelles effectively inhibited the migration and invasion of 143B cells. It was proven that mPEG--P(C7--CA) micelles downregulated the levels of proliferation and apoptosis-related proteins and affected osteosarcoma migration and invasion by inhibiting the epithelial-mesenchymal transition (EMT). In addition, mPEG--P(C7--CA) micelles can also inhibit the transcriptional activity of the PI3K/Akt signaling pathway. Therefore, these findings provide new evidence for the pharmacological effects of mPEG--P(C7--CA) micelles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295571PMC
http://dx.doi.org/10.3390/biomedicines11061524DOI Listing

Publication Analysis

Top Keywords

mpeg--pc7--ca micelles
24
anti-osteosarcoma mechanism
8
ph-sensitive charge-conversion
8
cinnamaldehyde polymeric
8
polymeric prodrug
8
mpeg--pc7--ca
8
143b cells
8
migration invasion
8
micelles
7
systematic study
4

Similar Publications

Stress-induced self-assembly of hierarchically twisted stripe arrays.

Sci Bull (Beijing)

December 2024

Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China. Electronic address:

Hierarchical organization is prevalent in nature, yet the artificial construction of hierarchical materials featuring asymmetric structures remains a big challenge. Herein, we report a stress-induced self-assembly strategy for the synthesis of hierarchically twisted stripe arrays (HTSAs) with mesoporous structures. A soft and thin mesostructured film assembled by micelles and TiO oligomers is the prerequisite.

View Article and Find Full Text PDF

Toxic organic solvents and electrolytes, traditionally indispensable for electro-organic synthesis, are now being reconsidered. In developing more sustainable electro-organic synthesis, we've harnessed the aqueous micelles as solvents and electrolyte-like structures when deformed under an electric field. The technology is showcased in synthetically highly valued hydrodefluorination reactions of difluorinated indoles.

View Article and Find Full Text PDF

Ionizable polymeric micelles (IPMs) for efficient siRNA delivery.

Nat Commun

January 2025

Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.

Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.

View Article and Find Full Text PDF

Solution NMR studies of large systems are hampered by rapid signal decay. We hereby introduce ROCSY (relaxation-optimized total correlation spectroscopy), which maximizes transfer efficiency across J-coupling-connected spin networks by minimizing the amount of time magnetization spends in the transverse plane. Hard pulses are substituted into the Clean-CITY TOCSY pulse element first developed by Ernst and co-workers, allowing for longer delays in which magnetization is aligned along the z-axis.

View Article and Find Full Text PDF

Ursodeoxycholic acid grafted chitosan oligosaccharide self-assembled micelles with enhanced oral absorption and antidiabetic effect of oleanolic acid.

Food Chem

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China. Electronic address:

Oleanolic acid (OA) is a food-derived bioactive component with antidiabetic activity, but its water solubility and oral bioavailability are notably restricted. In this study, to overcome these limitations, ursodeoxycholic acid-modified chitosan oligosaccharide (UCOS) was synthesized to encapsulate OA in self-assembled nanomicelles (UCOS-OA). The encapsulation efficiency and drug loading of UCOS-OA were 86 % and 11 %, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!