We review the research progress on noninvasive neural regulatory systems through system design and theoretical guidance. We provide an overview of the development history of noninvasive neuromodulation technology, focusing on system design. We also discuss typical cases of neuromodulation that use modern noninvasive electrical stimulation and the main limitations associated with this technology. In addition, we propose a closed-loop system design solution of the "time domain", "space domain", and "multi-electrode combination". For theoretical guidance, this paper provides an overview of the "digital brain" development process used for noninvasive electrical-stimulation-targeted modeling and the development of "digital human" programs in various countries. We also summarize the core problems of the existing "digital brain" used for noninvasive electrical-stimulation-targeted modeling according to the existing achievements and propose segmenting the tissue. For this, the tissue parameters of a multimodal image obtained from a fresh cadaver were considered as an index. The digital projection of the multimodal image of the brain of a living individual was implemented, following which the segmented tissues could be reconstructed to obtain a "digital twin brain" model with personalized tissue structure differences. The "closed-loop system" and "personalized digital twin brain" not only enable the noninvasive electrical stimulation of neuromodulation to achieve the visualization of the results and adaptive regulation of the stimulation parameters but also enable the system to have individual differences and more accurate stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295338 | PMC |
http://dx.doi.org/10.3390/biomedicines11061513 | DOI Listing |
J Neural Eng
January 2025
ECE & Neurology, University of Texas at Austin, 301 E. Dean Keeton St. C2100, Austin, Texas, 78712-1139, UNITED STATES.
Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).
View Article and Find Full Text PDFPhysiol Meas
January 2025
Chair of Measurements and Sensor Technology, Technische Universitat Chemnitz, Reichenhainerstrasse 70, Chemnitz, 09111, GERMANY.
Objective: Electrical Impedance Tomography (EIT) is a non-invasive technique used for lung imaging. A significant challenge in EIT is reconstructing images of deeper thoracic regions due to the low sensitivity of boundary voltages to internal conductivity variations. The current injection pattern is decisive as it influences the current path, boundary voltages, and their sensitivity to tissue changes.
View Article and Find Full Text PDFCrit Care Explor
January 2025
Department of Mathematics and School of Biomedical Engineering, Colorado State University, Fort Collins, CO.
The purpose of this work is to evaluate the feasibility of lung imaging using 3D electrical impedance tomography (EIT) during spontaneous breathing trials (SBTs) in patients with acute hypoxic respiratory failure. EIT is a noninvasive, nonionizing, real-time functional imaging technique, suitable for bedside monitoring in critically ill patients. EIT data were collected in 24 mechanically ventilated patients immediately preceding and during a SBT on two rows of 16 electrodes using a simultaneous multicurrent source EIT system for 3D imaging.
View Article and Find Full Text PDFLasers Surg Med
January 2025
Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Background: Noninvasive aesthetic procedures for facial rejuvenation are gaining popularity. Conventional treatments, such as radiofrequency (RF) and high-intensity focused ultrasound (HIFU), primarily improve skin quality but do not address the deeper musculoaponeurotic structures that affect facial laxity. A novel approach that delivers synchronized RF with high intensity facial electrical stimulation (HIFES) thought to target both the skin and underlying musculoaponeurotic framework to effectively enhance facial laxity has been investigated.
View Article and Find Full Text PDFPain Manag Nurs
January 2025
Clinical Research Development Unit of Tabriz Valiasr Hospital, University of Medical Sciences, Tabriz, Iran. Electronic address:
Purpose: Transcutaneous Electrical Acupoint Stimulation (TEAS) is a noninvasive technique that involves the application of electrical stimulation to specific acupoints on the skin. This meta-analysis aimed to evaluate the clinical efficacy of TEAS in alleviating postoperative pain after gynecological surgeries.
Method: A systematic search of multiple electronic databases was carried out to identify relevant studies that investigated the use of TEAS for postoperative pain management in gynecological surgery settings.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!