Doxorubicin (DOX) and mitoxantrone (MTX) are classical chemotherapeutic agents used in cancer that induce similar clinical cardiotoxic effects, although it is not clear if they share similar underlying molecular mechanisms. We aimed to assess the effects of DOX and MTX on the cardiac remodeling, focusing mainly on metabolism and autophagy. Adult male CD-1 mice received pharmacologically relevant cumulative doses of DOX (18 mg/kg) and MTX (6 mg/kg). Both DOX and MTX disturbed cardiac metabolism, decreasing glycolysis, and increasing the dependency on fatty acids (FA) oxidation, namely, through decreased AMP-activated protein kinase (AMPK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) content and decreased free carnitine (C0) and increased acetylcarnitine (C2) concentration. Additionally, DOX heavily influenced glycolysis, oxidative metabolism, and amino acids turnover by exclusively decreasing phosphofructokinase (PFKM) and electron transfer flavoprotein-ubiquinone oxidoreductase (ETFDH) content, and the concentration of several amino acids. Conversely, both drugs downregulated autophagy given by the decreased content of autophagy protein 5 (ATG5) and microtubule-associated protein light chain 3 (LC3B), with MTX having also an impact on Beclin1. These results emphasize that DOX and MTX modulate cardiac remodeling differently, despite their clinical similarities, which is of paramount importance for future treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296231PMC
http://dx.doi.org/10.3390/biom13060921DOI Listing

Publication Analysis

Top Keywords

dox mtx
12
autophagy adult
8
cardiac remodeling
8
amino acids
8
dox
6
mtx
6
cardiac
4
cardiac molecular
4
molecular remodeling
4
remodeling anticancer
4

Similar Publications

Chemotherapeutic drugs have demonstrated effectiveness in treating various neoplastic conditions; however, they can also have detrimental effects on male gonadal function and fertility. Consequently, interest has grown in identifying novel approaches that can mitigate chemotherapy-induced testicular damage. Thymoquinone (TQ), the chief active component of the volatile oil of (NS), has a wide range of therapeutic properties, including antioxidant, anti-inflammatory and anti-apoptotic effects.

View Article and Find Full Text PDF

The present study is aimed at developing an innovative method for efficient cancer cell destruction by exploiting the magnetomechanical actuation (MMA) of Fe-Cr-Nb-B magnetic particles (MPs), which are loaded with clinically approved chemotherapeutic drugs. To achieve this objective, FeCrNbB magnetic nanoparticles were produced by mechanically grinding amorphous ribbon precursors with the same composition. These nanoparticles display high anisotropy, a parallelepipedic shape with an amorphous structure, and a ferromagnetic behavior.

View Article and Find Full Text PDF

Osteosarcoma (OS) cancer treatments include systemic chemotherapy and surgical resection. In the last years, novel treatment approaches have been proposed, which employ a drug-delivery system to prevent offside effects and improves treatment efficacy. Locally delivering anticancer compounds improves on high local concentrations with more efficient tumour-killing effect, reduced drugs resistance and confined systemic effects.

View Article and Find Full Text PDF

TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX).

View Article and Find Full Text PDF

Collagen nanoparticles (collagen-NPs) are promising biopolymeric nanoparticles due to their superior biodegradability and biocompatibility. The low immunogenicity and non-toxicity of collagen-NPs makes it preferable for a wide range of applications. A total of eight morphologically distinct actinomycetes strains were newly isolated from various soil samples in Egypt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!