Barley ( L.) is one of the most commonly cultivated cereals worldwide. Its local varieties can represent a valuable source of unique genetic variants useful for crop improvement. The aim of this study was to reveal loci contributing to spike productivity traits in Siberian spring barley and to develop diagnostic DNA markers for marker-assisted breeding programs. For this purpose we conducted a genome-wide association study using a panel of 94 barley varieties. In total, 64 SNPs significantly associated with productivity traits were revealed. Twenty-three SNP markers were validated by genotyping in an independent sample set using competitive allele-specific PCR (KASP). Finally, fourteen markers associated with spike productivity traits on chromosomes 2H, 4H and 5H can be suggested for use in breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295979 | PMC |
http://dx.doi.org/10.3390/biom13060909 | DOI Listing |
Viruses
November 2024
Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, Université de Strasbourg, 67000 Strasbourg, France.
Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on multiple infections and other stresses, there is an urgent need for fast screening tests to evaluate resistance/tolerance traits in sugar beet accessions. To address this issue, we exploited the virus-induced gene silencing (VIGS) system, by introducing a fragment of a gene involved in chlorophyll synthesis in the BMYV genome.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
L., (pitaya) is an important tropical fruit crop, and faces significant challenges from soil salinity and heavy metal toxicity. This study explores the role of melatonin (M) in enhancing stress tolerance in pitaya against salinity (S) and copper (Cu) toxicity, both individually and in combination (SCu).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
Cadmium (Cd) toxicity in agricultural soil is increasing globally and significantly impacts crop production and food safety. Tibetan hull-less barley ( L. var.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Key Laboratory of Plant Functional Genomics of the Ministry of Education/Zhongshan Biological Breeding Laboratory, Yangzhou University, Yangzhou 225009, China.
The whiteness of rice grains (WRG) is a key indicator of appearance quality, directly impacting its commercial value. The trait is quantitative, influenced by multiple factors, and no specific genes have been cloned to date. In this study, we first examined the correlation between the whiteness of polished rice, cooked rice, and rice flour, finding that the whiteness of rice flour significantly correlated with both polished and cooked rice.
View Article and Find Full Text PDFPlants (Basel)
December 2024
CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Hydraulic functionality is crucial for tree productivity and stress tolerance. According to the theory of the fast-slow economics spectrum, the adaptive strategies of different tree species diverge along a spectrum defined by coordination and trade-offs of a suite of functional traits. The fast- and slow-growing species are expected to differ in hydraulic efficiency and safety; however, there is still a lack of investigation on the mechanistic association between tree growth rate and tree hydraulic functionality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!