(1) Background: Minimal hepatic encephalopathy (MHE) is an important complication of decompensated cirrhosis. Previous studies have demonstrated spontaneous brain activity alterations in cirrhotic patients with MHE. However, the reported results are inconsistent, which has limited our understanding of the potential neural mechanisms. Thus, we conducted a quantitative meta-analysis of resting-state functional imaging studies to identify the regional activity alterations consistently involved in MHE. (2) Methods: We searched six databases to include resting-state functional imaging studies and compared spontaneous brain activity patterns between MHE patients and healthy controls (HCs), and between cirrhotic patients without minimal hepatic encephalopathy (NMHE) and HCs. Then, a separate whole-brain voxel-wise meta-analysis between MHE or NMHE patients and HCs was conducted using seed-based d mapping with permutation of subject images. We further conducted the conjunction analysis to assess the distinct regional activity alterations between MHE and NMHE patients as compared to HCs. (3) Results: Thirteen studies with twenty datasets were included in this meta-analysis. Compared with HCs, MHE patients showed decreased spontaneous brain activity in the left superior frontal gyrus, left median cingulate/paracingulate gyri, and right precuneus. Compared with NMHE patients, MHE patients indicated decreased spontaneous brain activity in the left superior frontal gyrus, left median cingulate/paracingulate gyri, and right precuneus. (4) Conclusions: MHE is associated with spontaneous brain activity alterations involving the left superior frontal gyrus and median cingulate/paracingulate gyri, which may implicate primarily in spatial working memory and emotional disorders. These findings may contribute to a better understanding of the potential neural mechanisms, and guide further research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296644PMC
http://dx.doi.org/10.3390/brainsci13060960DOI Listing

Publication Analysis

Top Keywords

spontaneous brain
24
brain activity
24
activity alterations
16
cirrhotic patients
12
minimal hepatic
12
hepatic encephalopathy
12
resting-state functional
12
functional imaging
12
mhe patients
12
nmhe patients
12

Similar Publications

Unilateral whisker denervation activates plasticity mechanisms and circuit adaptations in adults. Single nucleus RNA sequencing and multiplex fluorescence in situ hybridization revealed differentially expressed genes related to altered glutamate receptor distributions and synaptogenesis in thalamocortical (TC) recipient layer 4 (L4) neurons of the sensory cortex, specifically those receiving input from the intact whiskers after whisker denervation. Electrophysiology detected increased spontaneous excitatory events at L4 neurons, confirming an increase in synaptic connections.

View Article and Find Full Text PDF

The motor symptoms of Parkinson's Disease are attributed to the degeneration of dopamine neurons in the substantia nigra pars compacta (SNc). Previous work in the MCI-Park mouse model has suggested that the loss of somatodendritic dopamine transmission predicts the development of motor deficits. In the current study, brain slices from MCI-Park mice were used to investigate dopamine signaling in the SNc prior to and through the onset of movement deficits.

View Article and Find Full Text PDF

Transcription and epigenetic factor dynamics in neuronal activity-dependent gene regulation.

Trends Genet

January 2025

Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China. Electronic address:

Neuronal activity, including sensory-evoked and spontaneous firing, regulates the expression of a subset of genes known as activity-dependent genes. A key issue in this process is the activation and accumulation of transcription factors (TFs), which bind to cis-elements at specific enhancers and promoters, ultimately driving RNA synthesis through transcription machinery. Epigenetic factors such as histone modifiers also play a crucial role in facilitating the specific binding of TFs.

View Article and Find Full Text PDF

Brain-Computer Interface and Electrochemical Sensor Based on Boron-Nitrogen Co-Doped Graphene-Diamond Microelectrode for EEG and Dopamine Detection.

ACS Sens

January 2025

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.

The simultaneous detection of electroencephalography (EEG) signals and neurotransmitter levels plays an important role as biomarkers for the assessment and monitoring of emotions and cognition. This paper describes the development of boron and nitrogen codoped graphene-diamond (BNGrD) microelectrodes with a diameter of only 200 μm for sensing EEG signals and dopamine (DA) levels, which have been developed for the first time. The optimized BNGrD microelectrode responded sensitively to both EEG and DA signals, with a signal-to-noise ratio of 9 dB for spontaneous EEG signals and a limit of detection as low as 124 nM for DA.

View Article and Find Full Text PDF

Electroencephalographic signals are obtained by amplifying and recording the brain's spontaneous biological potential using electrodes positioned on the scalp. While proven to help find changes in brain activity with a high temporal resolution, such signals are contaminated by non-stationary and frequent artefacts. A plethora of noise reduction techniques have been developed, achieving remarkable performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!