Drought stress inducing pollen sterility can reduce crop yield worldwide. The regulatory crosstalk associated with the effects of drought on pollen formation at the cellular level has not been explored in detail so far. In this study, we performed morphological and cytoembryological analysis of anther perturbations and examined pollen development in two spring barley genotypes that differ in earliness and drought tolerance. The Syrian breeding line CamB (drought-tolerant) and the European cultivar Lubuski (drought-sensitive) were used as experimental materials to analyze the drought-induced changes in yield performance, chlorophyll fluorescence kinetics, the pollen grain micromorphology and ultrastructure during critical stages of plant development. In addition, fluctuations in expression were studied, as this transcription factor is closely associated with the development of the anther. In the experiments, the studied plants were affected by drought, as was confirmed by the analyses of yield performance and chlorophyll fluorescence kinetics. However, contrary to our expectations, the pollen development of plants grown under specific conditions was not severely affected. The results also suggest that growth modification, as well as the perturbation in light distribution, can affect the expression. This study demonstrated that the duration of the vegetation period can influence plant drought responses and, as a consequence, the processes associated with pollen development as every growth modification changes the dynamics of drought effects as well as the duration of plant exposition to drought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297496PMC
http://dx.doi.org/10.3390/cells12121656DOI Listing

Publication Analysis

Top Keywords

pollen development
16
growth modification
12
development spring
8
spring barley
8
barley genotypes
8
drought
8
drought tolerance
8
yield performance
8
performance chlorophyll
8
chlorophyll fluorescence
8

Similar Publications

Xenia Effect on Nutritional and Flavor Components of 'Jingbaili' Pear.

Foods

January 2025

Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China.

The 'Jingbaili' pear is a national geographical indication product of China, featuring an oblate shape and being rich in nutrients. But the quality of the 'Jingbaili' pear is unstable. Xenia can cause changes in the quality of pears, but the effect of xenia on the 'Jingbaili' pear is unknown, and its mechanism is still unclear.

View Article and Find Full Text PDF

β-1,3-Glucanases (Glu) are key enzymes involved in plant defense and physiological processes through the hydrolysis of β-1,3-glucans. This study provides a comprehensive analysis of the β-1,3-glucanase gene family in wolfberry (), including their chromosomal distribution, evolutionary relationships, and expression profiles. A total of 58 genes were identified, distributed across all 12 chromosomes.

View Article and Find Full Text PDF

Mitochondrial genome structural variants and candidate cytoplasmic male sterility-related gene in sugarcane.

BMC Genomics

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.

Background: Sugarcane is a crucial crop for both sugar and bioethanol production. The nobilization breeding and utilization of wild germplasm have significantly enhanced its productivity. However, the pollen sterility in Saccharum officinarum restricts its role to being a female parent in crosses with Saccharum spontaneum during nobilization breeding, resulting in a narrow genetic basis for modern sugarcane cultivars.

View Article and Find Full Text PDF

Overexpression of the general transcription factor OsTFIIB5 alters rice development and seed quality.

Plant Cell Rep

January 2025

Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India.

Overexpression of general transcription factor OsTFIIB5 in rice affects seedling growth, plant height, flowering time, panicle architecture, and seed protein/starch levels and involves modulation of expression of associated genes. TFIIB, a key general transcription factor (GTF), plays a critical role in pre-initiation complex (PIC) formation and facilitates RNA polymerase II-mediated transcription. In humans and yeast, TFIIB is encoded by a single gene; however, in plants it is encoded by a multigene family whose products may perform specialized transcriptional functions.

View Article and Find Full Text PDF

PCP-B peptides and CrRLK1L receptor kinases control pollination via pH gating of aquaporins in Arabidopsis.

Dev Cell

January 2025

School of Life Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, Shanghai 202162, China. Electronic address:

During pollen-stigma interaction, pollen coat protein B-class peptides (PCP-Bs) compete with stigmatic rapid alkalinization factor (RALF) for interaction with FERONIA/ANJEA receptor kinases (FER/ANJ), stimulating pollen hydration and germination. However, the molecular mechanism underlying PCP-Bs-induced, FER/ANJ-regulated compatible responses remains largely unknown. Through PCP-Bγ-induced phosphoproteomic analysis, we characterized a series of pollination-related signaling pathways regulated by FER/ANJ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!