This study aimed to investigate the clinical implications and prognostic value of artificial intelligence (AI)-based results for chest radiographs (CXR) in coronavirus disease 2019 (COVID-19) patients. Patients who were admitted due to COVID-19 from September 2021 to March 2022 were retrospectively included. A commercial AI-based software was used to assess CXR data for consolidation and pleural effusion scores. Clinical data, including laboratory results, were analyzed for possible prognostic factors. Total O supply period, the last SpO result, and deterioration were evaluated as prognostic indicators of treatment outcome. Generalized linear mixed model and regression tests were used to examine the prognostic value of CXR results. Among a total of 228 patients (mean 59.9 ± 18.8 years old), consolidation scores had a significant association with erythrocyte sedimentation rate and C-reactive protein changes, and initial consolidation scores were associated with the last SpO result (estimate -0.018, = 0.024). All consolidation scores during admission showed significant association with the total O supply period and the last SpO result. Early changing degree of consolidation score showed an association with deterioration (odds ratio 1.017, 95% confidence interval 1.005-1.03). In conclusion, AI-based CXR results for consolidation have potential prognostic value for predicting treatment outcomes in COVID-19 patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297159PMC
http://dx.doi.org/10.3390/diagnostics13122090DOI Listing

Publication Analysis

Top Keywords

covid-19 patients
12
spo result
12
consolidation scores
12
chest radiographs
8
outcomes covid-19
8
total supply
8
supply period
8
period spo
8
prognostic
6
consolidation
6

Similar Publications

Background: Young patients aged 16 to 25 years with type 1 diabetes (T1D) often encounter challenges related to deteriorating disease control and accelerated complications. Mobile apps have shown promise in enhancing self-care among youth with diabetes. However, inconsistent findings suggest that further evidence is necessary to confirm the effectiveness of app-based interventions.

View Article and Find Full Text PDF

Pathophysiological Significance of α-Synuclein in Sympathetic Nerves: In Vivo Observations.

Neurology

February 2025

From the Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.

Background And Objectives: Lewy body diseases (LBDs) such as Parkinson disease (PD) feature increased deposition of α-synuclein (α-syn) in cutaneous sympathetic noradrenergic nerves. The pathophysiologic significance of sympathetic intraneuronal α-syn is unclear. We reviewed data about immunoreactive α-syn, tyrosine hydroxylase (TH, a marker of catecholaminergic fibers), and the sympathetic neurotransmitter norepinephrine (NE) in skin biopsies from control participants and patients with PD, the related LBD pure autonomic failure (PAF), the non-LBD synucleinopathy multiple system atrophy (MSA), or neurologic postacute sequelae of severe acute respiratory syndrome coronavirus 2 (neuro-PASC).

View Article and Find Full Text PDF

Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients share similar symptoms including post-exertional malaise, neurocognitive impairment, and memory loss. The neurocognitive impairment in both conditions might be linked to alterations in the hippocampal subfields. Therefore, this study compared alterations in hippocampal subfields of 17 long COVID, 29 ME/CFS patients, and 15 healthy controls (HC).

View Article and Find Full Text PDF

Importance: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication of COVID-19 infection. Data on midterm outcomes are limited.

Objective: To characterize the frequency and time course of cardiac dysfunction (left ventricular ejection fraction [LVEF] <55%), coronary artery aneurysms (z score ≥2.

View Article and Find Full Text PDF

Background: Computed tomography (CT)-derived low muscle mass is associated with adverse outcomes in critically ill patients. Muscle ultrasound is a promising strategy for quantitating muscle mass. We evaluated the association between baseline ultrasound rectus femoris cross-sectional area (RF-CSA) and intensive care unit (ICU) mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!