Objective: The objective of this study is to develop a novel automatic convolutional neural network (CNN) that aids in the diagnosis of meniscus injury, while enabling the visualization of lesion characteristics. This will improve the accuracy and reduce diagnosis times.

Methods: We presented a cascaded-progressive convolutional neural network (C-PCNN) method for diagnosing meniscus injuries using magnetic resonance imaging (MRI). A total of 1396 images collected in the hospital were used for training and testing. The method used for training and testing was 5-fold cross validation. Using intraoperative arthroscopic diagnosis and MRI diagnosis as criteria, the C-PCNN was evaluated based on accuracy, sensitivity, specificity, receiver operating characteristic (ROC), and evaluation performance. At the same time, the diagnostic accuracy of doctors with the assistance of cascade- progressive convolutional neural networks was evaluated. The diagnostic accuracy of a C-PCNN assistant with an attending doctor and chief doctor was compared to evaluate the clinical significance.

Results: C-PCNN showed 85.6% accuracy in diagnosing and identifying anterior horn injury, and 92% accuracy in diagnosing and identifying posterior horn injury. The average accuracy of C-PCNN was 89.8%, AUC = 0.86. The diagnosis accuracy of the attending physician with the aid of the C-PCNN was comparable to that of the chief physician.

Conclusion: The C-PCNN-based MRI technique for diagnosing knee meniscus injuries has significant practical value in clinical practice. With a high rate of accuracy, clinical auxiliary physicians can increase the speed and accuracy of diagnosis and decrease the number of incorrect diagnoses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297643PMC
http://dx.doi.org/10.3390/diagnostics13122049DOI Listing

Publication Analysis

Top Keywords

convolutional neural
16
neural network
12
accuracy
10
cascaded-progressive convolutional
8
network c-pcnn
8
diagnosis meniscus
8
meniscus injury
8
meniscus injuries
8
training testing
8
diagnostic accuracy
8

Similar Publications

Importance: Hypertension underpins significant global morbidity and mortality. Early lifestyle intervention and treatment are effective in reducing adverse outcomes. Artificial intelligence-enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for predicting incident hypertension.

View Article and Find Full Text PDF

Objective: Automatic segmentation and detection of vestibular schwannoma (VS) in MRI by deep learning is an upcoming topic. However, deep learning faces generalization challenges due to tumor variability even though measurements and segmentation of VS are essential for growth monitoring and treatment planning. Therefore, we introduce a novel model combining two Convolutional Neural Network (CNN) models for the detection of VS by deep learning aiming to improve performance of automatic segmentation.

View Article and Find Full Text PDF

Introduction: Musical instrument recognition is a critical component of music information retrieval (MIR), aimed at identifying and classifying instruments from audio recordings. This task poses significant challenges due to the complexity and variability of musical signals.

Methods: In this study, we employed convolutional neural networks (CNNs) to analyze the contributions of various spectrogram representations-STFT, Log-Mel, MFCC, Chroma, Spectral Contrast, and Tonnetz-to the classification of ten different musical instruments.

View Article and Find Full Text PDF

Background: Pes planus (flatfoot) and pes cavus (high arch foot) are common foot deformities, often requiring clinical and radiographic assessment for diagnosis and potential subsequent management. Traditional diagnostic methods, while effective, pose limitations such as cost, radiation exposure, and accessibility, particularly in underserved areas.

Aim: To develop deep learning algorithms that detect and classify such deformities using smartphone cameras.

View Article and Find Full Text PDF

Faced with anomalies in medical images, Deep learning is facing major challenges in detecting, diagnosing, and classifying the various pathologies that can be treated via medical imaging. The main challenges encountered are mainly due to the imbalance and variability of the data, as well as its complexity. The detection and classification of skin diseases is one such challenge that researchers are trying to overcome, as these anomalies present great variability in terms of appearance, texture, color, and localization, which sometimes makes them difficult to identify accurately and quickly, particularly by doctors, or by the various Deep Learning techniques on offer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!