Bioinks of Natural Biomaterials for Printing Tissues.

Bioengineering (Basel)

Department of Medical Laboratory Sciences, Public Health and Nutrition Science, Tarleton State University, a Member of Texas A & M University System, Fort Worth, TX 76104, USA.

Published: June 2023

Bioinks are inks-in other words, hydrogels-prepared from biomaterials with certain physiochemical properties together with cells to establish hierarchically complex biological 3D scaffolds through various 3D bioprinting technologies [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295590PMC
http://dx.doi.org/10.3390/bioengineering10060705DOI Listing

Publication Analysis

Top Keywords

bioinks natural
4
natural biomaterials
4
biomaterials printing
4
printing tissues
4
tissues bioinks
4
bioinks inks-in
4
inks-in hydrogels-prepared
4
hydrogels-prepared biomaterials
4
biomaterials physiochemical
4
physiochemical properties
4

Similar Publications

Three-Dimensional Bioprinting for Retinal Tissue Engineering.

Biomimetics (Basel)

December 2024

Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada.

Three-dimensional bioprinting (3DP) is transforming the field of regenerative medicine by enabling the precise fabrication of complex tissues, including the retina, a highly specialized and anatomically complex tissue. This review provides an overview of 3DP's principles, its multi-step process, and various bioprinting techniques, such as extrusion-, droplet-, and laser-based methods. Within the scope of biomimicry and biomimetics, emphasis is placed on how 3DP potentially enables the recreation of the retina's natural cellular environment, structural complexity, and biomechanical properties.

View Article and Find Full Text PDF

Investigation of bioprintable modified agar-based hydrogels with antimicrobial properties.

Int J Biol Macromol

December 2024

Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland.

Due to the numerous dangers arising from excessive use of antibiotics in treatments, researchers have been searching for natural alternatives to conventional antibiotics. Despite the popularity of plant extracts, essential oils, and their derivatives in herbal medicine, their applications in novel therapies are rather limited. This paper tries to open a new possibility for infection treatments by assessing the suitability of antimicrobial hydrogels as bioinks.

View Article and Find Full Text PDF

A Versatile Method to Produce Monomodal Nano- to Micro-Fiber Fragments as Fillers for Biofabrication.

Small Methods

December 2024

Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, D-97070, Würzburg, Germany.

A key goal of biofabrication is the production of 3D tissue models with biomimetic properties. In natural tissues, fibrils-mainly composed of collagen-play a critical role in stabilizing and spatially organizing the extracellular matrix. To use biomimetic fibers for reinforcing bioinks in 3D printing, fiber fragmentation is necessary to prevent nozzle clogging.

View Article and Find Full Text PDF

Photocrosslinkable Biomaterials for 3D Bioprinting: Mechanisms, Recent Advances, and Future Prospects.

Int J Mol Sci

November 2024

Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.

Constructing scaffolds with the desired structures and functions is one of the main goals of tissue engineering. Three-dimensional (3D) bioprinting is a promising technology that enables the personalized fabrication of devices with regulated biological and mechanical characteristics similar to natural tissues/organs. To date, 3D bioprinting has been widely explored for biomedical applications like tissue engineering, drug delivery, drug screening, and in vitro disease model construction.

View Article and Find Full Text PDF

Carbon Based Polymeric Nanocomposite Hydrogel Bioink: A Review.

Polymers (Basel)

November 2024

Department of Biomedical Engineering & Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.

Carbon-based polymeric nanocomposite hydrogels (NCHs) represent a groundbreaking advancement in biomedical materials by integrating nanoparticles such as graphene, carbon nanotubes (CNTs), carbon dots (CDs), and activated charcoal (AC) into polymeric matrices. These nanocomposites significantly enhance the mechanical strength, electrical conductivity, and bioactivity of hydrogels, making them highly effective for drug delivery, tissue engineering (TE), bioinks for 3D Bioprinting, and wound healing applications. Graphene improves the mechanical and electrical properties of hydrogels, facilitating advanced tissue scaffolding and drug delivery systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!