Neonatal seizure is an important clinical symptom of brain dysfunction, which is more common in infancy than in childhood. At present, video electroencephalogram (VEEG) technology is widely used in clinical practice. However, video electroencephalogram technology has several disadvantages. For example, the wires connecting the medical instruments may interfere with the infant's movement and the gel patch electrode or disk electrode commonly used to monitor EEG may cause skin allergies or even tears. For the above reasons, we developed a wearable multi-sensor platform for newborns to collect physiological and movement signals. In this study, we designed a second-generation multi-sensor platform and developed an automatic detection algorithm for neonatal seizures based on ECG, respiration and acceleration. Data for 38 neonates were recorded at the Children's Hospital of Fudan University in Shanghai. The total recording time was approximately 300 h. Four of the patients had seizures during data collection. The total recording time for the four patients was approximately 34 h, with 30 seizure episodes recorded. These data were evaluated by the algorithm. To evaluate the effectiveness of combining ECG, respiration and movement, we compared the performance of three types of seizure detectors. The first detector included features from ECG, respiration and acceleration records; the second detector incorporated features based on respiratory movement from respiration and acceleration records; and the third detector used only ECG-based features from ECG records. Our study illustrated that, compared with the detector utilizing individual modal features, multi-modal feature detectors could achieve favorable overall performance, reduce false alarm rates and give higher F-measures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294985 | PMC |
http://dx.doi.org/10.3390/bioengineering10060658 | DOI Listing |
J Family Med Prim Care
December 2024
Department of Neonatology, All India Institute of Medical Science, Jodhpur, Rajasthan, India.
Context: Heart rate (HR) is the most vital parameter to assess hemodynamic transition at birth. ECG is considered a gold standard for HR assessment. New devices with dry electrodes are easy to apply on a wet newborn.
View Article and Find Full Text PDFMitochondrion
January 2025
The Department of Blood Circulation of Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine.
Pyridoxal-5-phosphate (PLP) enhances the synthesis of endogenous hydrogen sulfide, a potent regulator of cell metabolism. We used 24-month-old rats to investigate the PLP mitoprotective function in the aging heart. We demonstrated improvement of mitochondrial bioenergetic functions, inhibition of mPTP opening after PLP administration.
View Article and Find Full Text PDFSci Data
January 2025
Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany.
Heart rate variability (HRV) is a key indicator of cardiac autonomic function, making reliable assessment crucial. To examine the test-retest stability of resting HRV in healthy individuals, fifty participants attended two lab sessions within a week, at the same time of day. After a 5-minute acclimatization period, electrocardiogram and respiration were recorded at rest.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Corsano Health B.V., Wilhelmina van Pruisenweg 35, 2595 AN The Hague, The Netherlands.
Monitoring respiration rate (RR) is crucial in various healthcare settings, particularly during demanding (physical) activities where respiratory dynamics are critical indicators of health status. This study aimed to evaluate the accuracy of photoplethysmography (PPG)-based monitoring of RR during high-intensity interval training (HIIT) and its potential applications in healthcare. Between January and March 2024, healthy volunteers participated in a cycling HIIT session with increasing resistance levels.
View Article and Find Full Text PDFFront Neurosci
November 2024
Department of Medical Biology, Section Systems Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.
During an ECG-training course, a case of extreme respiratory sinus arrhythmia (RSA) was found in a 19-year-old slender, female student who was not active in sports. The heart rate (HR) fluctuated from above 100 to below 60 beats per minute (bpm), often from one beat to the next. The pattern was repetitive and appeared to be linked to respiration, representing an extreme form of RSA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!