The demand for electrically insulated microwires and microfibers in biomedical applications is rapidly increasing. Polymer protective coatings with high electrical resistivity, good chemical resistance, and a long shelf-life are critical to ensure continuous device operation during chronic applications. As soft and flexible electrodes can minimize mechanical mismatch between tissues and electronics, designs based on flexible conductive microfibers, such as carbon nanotube (CNT) fibers, and soft polymer insulation have been proposed. In this study, a continuous dip-coating approach was adopted to insulate meters-long CNT fibers with hydrogenated nitrile butadiene rubber (HNBR), a soft and rubbery insulating polymer. Using this method, 4.8 m long CNT fibers with diameters of 25-66 µm were continuously coated with HNBR without defects or interruptions. The coated CNT fibers were found to be uniform, pinhole free, and biocompatible. Furthermore, the HNBR coating had better high-temperature tolerance than conventional insulating materials. Microelectrodes prepared using the HNBR-coated CNT fibers exhibited stable electrochemical properties, with a specific impedance of 27.0 ± 9.4 MΩ µm at 1.0 kHz and a cathodal charge storage capacity of 487.6 ± 49.8 mC cm. Thus, the developed electrodes express characteristics that made them suitable for use in implantable medical devices for chronic in vivo applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295676 | PMC |
http://dx.doi.org/10.3390/bioengineering10060647 | DOI Listing |
Small
December 2024
Songshan Lake Materials Laboratory (SLAB), Dongguan, 523808, P. R. China.
Aqueous zinc-ion batteries (AZIBs) stand out among many energy storage systems due to their many merits, and it's expected to become an alternative to the prevailing alkali metal ion batteries. Nevertheless, the cumbersome manufacturing process and the high cost of conventional separators make them unfavorable for large-scale applications. Herein, inspired by the unique nature of cellulose and ZrO, a Janus cellulose fiber (CF)/polyvinyl alcohol (PVA)/ZrO separator is prepared via the vacuum filtration method.
View Article and Find Full Text PDFHeliyon
May 2024
Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, P.O. Box 87317-53153, Iran.
J Colloid Interface Sci
December 2024
School of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
MXene exhibits exceptional electrical and electrochemical properties, and is regarded as a promising candidate for future wearable electronic products. However, achieving a balance between flexibility and capacitance performance in MXene-based fiber supercapacitors remains a challenge. Here, MXene/Thermoplastic polyurethane (TPU) composite fibers with good conductivity and tensile properties, were prepared by wet spinning method.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
In this study, we showed that hybrid reinforcement-a combination of nanoparticles and fibers-can provide more effective reinforcement for increasing the recovery stress of a shape memory polymer (SMP) than using either filler individually. We mixed carbon fibers (CF) and carbon nanotubes (CNT) into a poly(lactic acid) (PLA) matrix on a twin-screw extruder and injection molded specimen from the hybrid composite. Subsequently, some of the specimens were subjected to crystallizing heat treatment, while others were kept as molded to study the effects of crystallinity as well.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Architectural Engineering, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea.
Lightweight aggregate concrete can reduce the self-weight of a structure with a low unit weight; however, disadvantages such as reduced strength and brittleness remain. This study evaluated the thermal and mechanical properties of lightweight aggregate cement mortars containing carbon nanotubes (CNTs) and amorphous metallic fibers (AMFs). A thermal property test indicated that the peak temperature of the C1A1 and C1A2 samples using AMFs was approximately 91.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!