A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Risk Assessment Model System for Aquatic Animal Introduction Based on Analytic Hierarchy Process (AHP). | LitMetric

The spread of invasive species (IS) has the potential to upset ecosystem balances. In extreme cases, this can hinder economical utilization of both aquatic (fisheries) and terrestrial (agricultural) systems. As a result, many countries regard risk assessment of IS as an important process for solving the problem of biological invasion. Yet, some IS are purposefully introduced for what is seen as their potential economic benefits. Thus, conducting IS risk assessments and then formulating policies based on scientific information will allow protocols to be developed that can reduce problems associated with IS incursions, whether occurring purposefully or not. However, the risk assessment methods currently adopted by most countries use qualitative or semiquantitative methodologies. Currently, there is a mismatch between qualitative and quantitative assessments. Moreover, most assessment systems are for terrestrial animals. What is needed is an assessment system for aquatic animals; however, those currently available are relatively rudimentary. To fill this gap, we used the analytic hierarchy process (AHP) to build a risk assessment model system for aquatic IS. Our AHP has four primary indexes, twelve secondary indexes, and sixty tertiary indexes. We used this AHP to conduct quantitative risk assessments on five aquatic animals that are typically introduced in China, which have distinct biological characteristics, specific introduction purposes, and can represent different types of aquatic animals. The assessment results show that the risk grade for is high; the risk grade for , , and elegans is medium; and the grade risk for is low. Risk assessment of the introduction of aquatic animals using our AHP is effective, and it provides support for the introduction and healthy breeding of aquatic animals. Thus, the AHP model can provide a basis for decision-making risk management concerning the introduction of species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294931PMC
http://dx.doi.org/10.3390/ani13122035DOI Listing

Publication Analysis

Top Keywords

risk assessment
20
aquatic animals
20
system aquatic
12
risk
11
assessment model
8
model system
8
aquatic
8
analytic hierarchy
8
hierarchy process
8
process ahp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!