Targets for finished livestock are often determined by expected fat, either subcutaneous or intramuscular. These targets are used frequently to improve eating quality. Lower intramuscular fat, lack of product uniformity, and insufficient tenderness can negatively impact beef acceptability. This study aimed to investigate the differences in gene expression that alter metabolism and intercellular signaling in the muscle and adipose tissue in beef carcasses at different fat endpoints. In this study, longissimus thoracis muscle samples and adipose tissue were collected at harvest, and RNA was extracted and then sequenced using RNAseq. Differential expression was determined using edgeR, and -values were adjusted using the Benjamini-Hochberg method. A corrected -value of 0.005 and log (fold change) of >1 were the threshold to identify differential expression. Comparison between intermuscular and subcutaneous fat showed no differences in the genes activated in the two adipose tissue depots, suggesting that subcutaneous fat was an adequate sample. Carcass data allowed the classification of carcasses by USDA quality grades (marbling targets). In comparing muscle from Standard and Choice carcasses, 15 genes were downregulated, and 20 were upregulated. There were 49 downregulated and 113 upregulated genes comparing adipose tissue from Standard and Choice carcasses. These genes are related to the metabolism of fat and energy. This indicates that muscle transcript expression varies less than adipose. In addition, subcutaneous fat can be used to evaluate transcript changes in fat. However, it is unclear whether these fat tissues can be used as surrogates for marbling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294903PMC
http://dx.doi.org/10.3390/ani13121947DOI Listing

Publication Analysis

Top Keywords

adipose tissue
20
subcutaneous fat
12
fat
9
muscle adipose
8
differential expression
8
standard choice
8
choice carcasses
8
carcasses genes
8
adipose
6
muscle
5

Similar Publications

Objective: This study aimed to evaluate the potential of combining allogeneic adipose-derived mesenchymal stem cells (ADSCs) with autologous concentrated growth factors (CGF) to enhance the repair of mandibular defects in rabbits.

Methods: Rabbit ADSCs were characterized using flow cytometry, identifying CD73, CD90, and CD105 as surface markers, while Alizarin Red Staining confirmed osteogenic differentiation, showing substantial mineralized deposits by day 21. A total of 24 New Zealand white rabbits were divided into four groups: BLANK (control group), CGF, ADSCs, and ADSCs/CGF.

View Article and Find Full Text PDF

Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side.

Pharmaceutics

December 2024

Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.

The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.

View Article and Find Full Text PDF

: The prevalence of metabolic syndrome in children has been increasing, raising concerns about early detection and clinical management. Adipokines, which are secreted by adipose tissue, play a critical role in metabolic regulation and inflammation, while gamma-glutamyl transferase (GGT), as a liver enzyme, is linked to oxidative stress and metabolic disorders. The objective was to examine the association of circulating adipokines and GGT with metabolic syndrome risk in school-aged children from Northeast Mexico.

View Article and Find Full Text PDF

Background: Multimodal prehabilitation programs, which may incorporate nutritional supplementation and exercise, have been developed to combat sarcopenia in surgical patients to enhance post-operative outcomes. However, the optimal regime remains unknown. The use of beta-hydroxy beta-methylbutyrate (HMB) has beneficial effects on muscle mass and strength.

View Article and Find Full Text PDF

Background: Obesity and related metabolic disorders have reached epidemic levels, calling for diverse therapeutic strategies. Altering nutrient intake, timing and quantity by intermittent fasting seems to elicit beneficial health effects by modulating endocrine and cell signaling networks. This study explores the impact of cyclic nutrient availability in the form of every-other-day fasting (EODF) on human adipose stem cells (ASCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!