Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The poor bioavailability of antibiotics at infection sites is one of the leading causes of treatment failure and increased bacterial resistance. Therefore, developing novel, non-conventional antibiotic delivery strategies to deal with bacterial pathogens is essential. Here, we investigated the encapsulation of two fluoroquinolones, ciprofloxacin and levofloxacin, into polymer-based nano-carriers (nano-antibiotics), with the goal of increasing their local bioavailability at bacterial infection sites. The formulations were optimized to achieve maximal drug loading. The surfaces of nano-antibiotics were modified with anti-staphylococcal antibodies as ligand molecules to target pathogens. The interaction of nano-antibiotics with the bacterial cells was investigated via fluorescent confocal microscopy. Conventional tests (MIC and MBC) were used to examine the antibacterial properties of nano-antibiotic formulations. Simultaneously, a bioluminescence assay model was employed, revealing the rapid and efficient assessment of the antibacterial potency of colloidal systems. In comparison to the free-form antibiotic, the targeted nano-antibiotic exhibited enhanced antimicrobial activity against both the planktonic and biofilm forms of . Furthermore, our data suggested that the efficacy of a targeted nano-antibiotic treatment can be influenced by its antibiotic release profile.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295755 | PMC |
http://dx.doi.org/10.3390/antibiotics12061066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!