Biofilms are intricate multicellular structures created by microorganisms on living (biotic) or nonliving (abiotic) surfaces. Medically, biofilms often lead to persistent infections, increased antibiotic resistance, and recurrence of infections. In this review, we highlighted the clinical problem associated with biofilm infections and focused on current and emerging antibiofilm strategies. These strategies are often directed at disrupting quorum sensing, which is crucial for biofilm formation, preventing bacterial adhesion to surfaces, impeding bacterial aggregation in viscous mucus layers, degrading the extracellular polymeric matrix, and developing nanoparticle-based antimicrobial drug complexes which target persistent cells within the biofilm core. It is important to acknowledge, however, that the use of antibiofilm agents faces obstacles, such as limited effectiveness in vivo, potential cytotoxicity to host cells, and propensity to elicit resistance in targeted biofilm-forming microbes. Emerging next generation antibiofilm strategies, which rely on multipronged approaches, were highlighted, and these benefit from current advances in nanotechnology, synthetic biology, and antimicrobial drug discovery. The assessment of current antibiofilm mitigation approaches, as presented here, could guide future initiatives toward innovative antibiofilm therapeutic strategies. Enhancing the efficacy and specificity of some emerging antibiofilm strategies via careful investigations, under conditions that closely mimic biofilm characteristics within the human body, could bridge the gap between laboratory research and practical application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294981 | PMC |
http://dx.doi.org/10.3390/antibiotics12061005 | DOI Listing |
BMC Microbiol
December 2024
Department of Physics, College of Science, University of Halabja, Halabja, Kurdistan Region, Iraq.
Background: Antimicrobial resistance (AMR) presents a serious threat to health, highlighting the urgent need for more effective antimicrobial agents with innovative mechanisms of action. Nanotechnology offers promising solutions by enabling the creation of nanoparticles (NPs) with antibacterial properties. This study aimed to explore the antibacterial, anti-biofilm, and anti-virulence effects of eco-friendly synthesized α-Fe₂O₃ nanoparticles (α-Fe₂O₃-NPs) against pathogenic bacteria.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.
Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
Dental caries, as the predominant global oral disease, remains a critical public health issue worldwide, particularly in socioeconomically disadvantaged communities. However, common caries prevention approaches (, oral health education, mechanical plaque removal, and delivery of fluoride agents) are still insufficient for optimal caries management, and therefore, alternative regimens that can supplement existing strategies are highly warranted. Nanomaterials exhibit considerable potential in combating cariogenic pathogens and biofilms owing to their promising antimicrobial capacity, improved penetration into biofilms, targeted precision delivery, and versatile physicochemical properties.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
Objective: The foodborne pathogen Salmonella enterica serovar Typhimurium causes self-limiting gastroenteritis in humans and is difficult to eliminate due to its ability to adhere to surfaces and form biofilms that exhibit high resistance to antimicrobial agents. To explore alternative strategies for biofilm treatment, it is essential to investigate novel agents that inhibit Salmonella biofilms.
Method: In this study, we investigated the minimum biofilm inhibitory concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) of nafcillin and diosmin, both previously identified as Lon protease inhibitors, against biofilms formed by S.
Curr Top Med Chem
December 2024
Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
Introduction/objective: Tuberculosis (TB) remains a persistent global health challenge, with an increasing incidence of cases and limitations in current treatment strategies. Traditional therapy involves long drug treatments that can cause side effects and lead to drug-resistant strains, making treatment less effective. This study aimed to explore the therapeutic potential of a novel nanoparticle-based delivery system for Thymol (THY), a natural antibacterial bioactive molecule, to combat Mycobacterium smegmatis, a model organism for Mycobacterium tuberculosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!