The Antimicrobial Applications of Nanoparticles in Veterinary Medicine: A Comprehensive Review.

Antibiotics (Basel)

Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil.

Published: May 2023

Nanoparticles (NPs) are nanoscaled particles sized from 1-100 nm, which can be composed of inorganic or organic compounds. NPs have distinctive morphology, size, structure, and surface features, which give them specific properties. These particular attributes make them interesting for biological and medical applications. Due to these characteristics, researchers are studying the possible aptness of numerous nanoparticles in veterinary medicine, such as the capacity to act as a drug delivery system. The use of these NPs as a possible bactericidal or bacteriostatic medication has been studied against different bacteria, especially multiresistant strains and the ones that cause mastitis disease. The antibiofilm property of these nanostructures has also already been proved. The antiviral activity has also been shown for some important viral animal diseases; the antifungal activity had been demonstrated against both pathogenic and mycotoxigenic species. Therefore, this review aimed to elucidate the main clinical and preventive veterinary applications of inorganic and organic nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295505PMC
http://dx.doi.org/10.3390/antibiotics12060958DOI Listing

Publication Analysis

Top Keywords

nanoparticles veterinary
8
veterinary medicine
8
inorganic organic
8
antimicrobial applications
4
nanoparticles
4
applications nanoparticles
4
medicine comprehensive
4
comprehensive review
4
review nanoparticles
4
nanoparticles nps
4

Similar Publications

Nanomaterials impact in phytohormone signaling networks of plants-A critical review.

Plant Sci

December 2024

Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India. Electronic address:

Nanotechnology offers a transformative approach to augment plant growth and crop productivity under abiotic and biotic stress conditions. Nanomaterials interact with key phytohormones, triggering the synthesis of stress-associated metabolites, activating antioxidant defense mechanisms, and modulating gene expression networks that regulate diverse physiological, biochemical, and molecular processes within plant systems. This review critically examines the impact of nanoparticles on both conventional and genetically modified crops, focusing on their role in nutrient delivery systems and the modulation of plant cellular machinery.

View Article and Find Full Text PDF

Functional modification of drugs can significantly improve their efficacy and safety, thus enabling targeted therapy. Functional modifications based on polysaccharides can alter their molecular structure, and effectively enhance their functional properties and biological activities. Herein, we designed and synthesized cationic Laminarin (CLam) modified with polyethyleneimine (PEI) and explored its application as a vaccine adjuvant.

View Article and Find Full Text PDF

Objective: Genotoxicity assays include micronucleus test, comet assay, and malformed sperm head used to investigate the protective potential of quercetin and quercetin nanoparticles against imidacloprid-induced genotoxicity in Swiss albino mice.

Method: The ionic gelation procedure was used to synthesize the quercetin nanoparticles and characterized for their hydrodynamic diameter, zeta potential, SEM, TEM, FT-IR, and encapsulation efficiency. Total 48 mice were taken in eight groups with six animals in each group.

View Article and Find Full Text PDF

Influenza epidemics remain a global public health challenge. Vaccination with nucleic acid-based vaccines, which trigger strong cellular and humoral immune responses, represents a promising approach for preventing virus infection. However, its effectiveness relies on efficient delivery and an immunoadjuvant.

View Article and Find Full Text PDF

Sperm cryopreservation is a useful storage technique in artificial insemination. Nanoparticles and nanovesicles such as exosomes are widely used in sperm cryopreservation procedures to alleviate cold-induced injury inflicted during sperm freezing. The objective of the present study was to examine the impact of varying concentrations of exosomes derived from seminal plasma added to a freezing extender on the quality of post-thawed bull sperm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!