A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Collecting-Gathering Biophysics of the Blackworm Lumbriculus variegatus. | LitMetric

Many organisms exhibit collecting and gathering behaviors as a foraging and survival method. Benthic macroinvertebrates are classified as collector-gatherers due to their collection of particulate matter. Among these, the aquatic oligochaete Lumbriculus variegatus (California blackworms) demonstrates the ability to ingest both organic and inorganic materials, including microplastics. However, earlier studies have only qualitatively described their collecting behaviors for such materials. The mechanism by which blackworms consolidate discrete particles into a larger clump remains unexplored quantitatively. In this study, we analyze a group of blackworms in a large arena with an aqueous algae solution (organic particles) and find that their relative collecting efficiency is proportional to population size. We found that doubling the population size (N = 25-N = 50) results in a decrease in time to reach consolidation by more than half. Microscopic examination of individual blackworms reveals that both algae and microplastics physically adhere to the worm's body and form clumps due to external mucus secretions by the worms. Our observations also indicate that this clumping behavior reduces the worm's exploration of its environment, possibly due to thigmotaxis. To validate these observed biophysical mechanisms, we create an active polymer model of a worm moving in a field of particulate debris. We simulate its adhesive nature by implementing a short-range attraction between the worm and the nearest surrounding particles. Our findings indicate an increase in gathering efficiency when we add an attractive force between particles, simulating the worm's mucosal secretions. Our work provides a detailed understanding of the complex mechanisms underlying the collecting-gathering behavior in L. variegatus, informing the design of bioinspired synthetic collector systems, and advances our understanding of the ecological impacts of microplastics on benthic invertebrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10755170PMC
http://dx.doi.org/10.1093/icb/icad080DOI Listing

Publication Analysis

Top Keywords

lumbriculus variegatus
8
population size
8
collecting-gathering biophysics
4
biophysics blackworm
4
blackworm lumbriculus
4
variegatus organisms
4
organisms exhibit
4
exhibit collecting
4
collecting gathering
4
gathering behaviors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!