Objective: The tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), is a pest damaging many cultivated crops in North America. Although partial transcriptome data are available for this pest, a genome assembly was not available for this species. This assembly of a high-quality chromosome-length genome of TPB is aimed to develop the genetic resources that can provide the foundation required for advancing research on this species.

Results: The initial genome of TPB assembled with paired-end nucleotide sequences generated with Illumina technology was scaffolded with Illumina HiseqX reads generated from a proximity ligated (HiC) library to obtain a high-quality genome assembly. The final assembly contained 3963 scaffolds longer than 1 kbp to yield a genome of 599.96 Mbp. The N50 of the TPB genome assembly was 35.64 Mbp and 98.68% of the genome was assembled into 17 scaffolds larger than 1 Mbp. This megabase scaffold number is the same as the number of chromosomes observed in karyotyping of this insect. The TPB genome is known to have high repetitive DNA content, and the reduced assembled genome size compared to flowcytometric estimates of approximately 860 Mbp may be due to the collapsed assembly of highly similar regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303854PMC
http://dx.doi.org/10.1186/s13104-023-06408-wDOI Listing

Publication Analysis

Top Keywords

genome assembly
12
genome
10
tarnished plant
8
plant bug
8
lygus lineolaris
8
lineolaris palisot
8
palisot beauvois
8
genome tpb
8
tpb genome
8
assembly
7

Similar Publications

Population structure and genetic diversity of Toona sinensis revealed by whole-genome resequencing.

BMC Genom Data

January 2025

Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji'nan, 250103, Shandong, China.

Objectives: Toona sinensis, commonly known as Chinese toon, is a perennial woody plant with significant economic and ecological importance. This study employed whole-genome resequencing of 180 T. sinensis samples collected from Shandong to analyze genetic variation and diversity, ultimately identifying 18,231 high-quality SNPs after rigorous quality control and linkage disequilibrium pruning.

View Article and Find Full Text PDF

Background: Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited.

Results: In this study, we first reconstructed the entire mitochondrial genome of C.

View Article and Find Full Text PDF

Background: The advent of next generation sequencing technologies has enabled a surge in the number of whole genome sequences in public databases, and our understanding of the composition and evolution of bacterial genomes. Besides model organisms and pathogens, some attention has been dedicated to industrial bacteria, notably members of the Lactobacillaceae family that are commonly studied and formulated as probiotic bacteria. Of particular interest is Lactobacillus acidophilus NCFM, an extensively studied strain that has been widely commercialized for decades and is being used for the delivery of vaccines and therapeutics.

View Article and Find Full Text PDF

The highly allo-autopolyploid modern sugarcane genome and very recent allopolyploidization in Saccharum.

Nat Genet

January 2025

Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.

Modern sugarcane, a highly allo-autopolyploid organism, has a very complex genome. In the present study, the karyotype and genome architecture of modern sugarcane were investigated, resulting in a genome assembly of 97 chromosomes (8.84 Gb).

View Article and Find Full Text PDF

Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!