Electrochemical sensor based on the synergy between Cucurbit[8]uril and 2D-MoS for enhanced melatonin quantification.

Sci Rep

Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias, c/ Francisco Tomás y Valiente, Nº7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain.

Published: June 2023

We present the development of an electrochemical sensor towards melatonin determination based on the synergistic effect between MoS nanosheets and cucurbit[8]uril. For the sensor construction cucurbit[8]uril suspensions were prepared in water, and MoS nanosheets were obtained by liquid exfoliation in ethanol:water. The sensing platform was topographically characterized by Atomic Force Microscopy. Electrochemical Impedance Spectroscopy experiments allowed us to study the charge transfer process during melatonin oxidation. Moreover, stoichiometry of the resulting complex has also been determined. After the optimization of the sensor construction and the experimental variables involved in the Differential Pulse Voltammetric response of melatonin, detection limit of 3.80 × 10 M, relative errors minor than 3.8% and relative standard deviation lower than 4.4% were obtained. The proposed sensor has been successfully applied to melatonin determination in pharmaceutical and biological samples as human urine and serum, with very good recoveries ranging from 90 to 102%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300025PMC
http://dx.doi.org/10.1038/s41598-023-37401-9DOI Listing

Publication Analysis

Top Keywords

electrochemical sensor
8
melatonin determination
8
mos nanosheets
8
sensor construction
8
melatonin
5
sensor based
4
based synergy
4
synergy cucurbit[8]uril
4
cucurbit[8]uril 2d-mos
4
2d-mos enhanced
4

Similar Publications

Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.

View Article and Find Full Text PDF

The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.

View Article and Find Full Text PDF

Influence of Initial Gap, Voltage, and Additives on Zinc Microcolumn Morphology by Local Electrochemical Deposition.

Sensors (Basel)

January 2025

State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083, China.

Local electrochemical deposition (LECD) is an innovative additive manufacturing technology capable of achieving precise deposition of metallic microstructures. This study delves into the ramifications of pivotal operational parameters-namely, the initial electrode gap, deposition voltage, and additive concentration-on the morphology of zinc microcolumns fabricated through LECD. A holistic approach integrating experimental methodologies with finite element simulations was adopted to scrutinize the influence of these variables on the microcolumns' dimensions, surface morphology, and structural integrity.

View Article and Find Full Text PDF

Efficient management of soil nutrients is essential for optimizing crop production, ensuring sustainable agricultural practices, and addressing the challenges posed by population growth and environmental degradation. Smart agriculture, using advanced technologies, plays an important role in achieving these goals by enabling real-time monitoring and precision management of nutrients. In open-field soil cultivation, spatial variability in soil properties demands site-specific nutrient management and integration with variable-rate technology (VRT) to optimize fertilizer application, reduce nutrient losses, and enhance crop yields.

View Article and Find Full Text PDF

Reusable Biosensor for Easy RNA Detection from Unfiltered Saliva.

Sensors (Basel)

January 2025

Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland.

Biosensors are transforming point-of-care diagnostics by simplifying the detection process and enabling rapid, accurate testing. This study introduces a novel, reusable biosensor designed for direct viral RNA detection from unfiltered saliva, targeting SARS-CoV-2. Unlike conventional methods requiring filtration, our biosensor leverages a unique electrode design that prevents interference from saliva debris, allowing precise measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!