Lithium is commonly used in the treatment of bipolar disorders (BD) and consumer electronics. It has been reported that lithium exposure is associated with mitochondrial dysfunction and oxidative stress in isolated cardiac mitochondria. Mitochondrial protection has a key role in myocardial tissue homeostasis, cardiomyocyte survival and inhibition of cardiotoxicity. Hesperidin as a flavanone and cardioprotective agent has shown high potential in antioxidant activity and restoration of mitochondrial dysfunction in different models. Therefore, we aimed to evaluate the ameliorative effects of hesperidin against lithium-induced mitochondrial toxicity in rat cardiac mitochondria. Isolated mitochondria were classified into six groups; control, lithium carbonate (125 µM), three groups of lithium + hesperidin-treated received lithium (125 µM) and hesperidin with various concentrations (10, 50, and 100 µM) and hesperidin (100 µM). Succinate dehydrogenases (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial glutathione (GSH) and lipid peroxidation (LPO) were measured. The mitochondria received lithium showed a significant reduction of SDH activity, MMP collapse, mitochondrial swelling, induction of ROS formation and lipid peroxidation. However, we observed that the administration of hesperidin (50 and 100 µM) resulted in the increase of SDH activity, improved MMP collapse, mitochondrial swelling, and reduced ROS formation and lipid peroxidation. Also, there were no obvious changes in cardiac mitochondria received of hesperidin. These findings suggest that hesperidin could reduce lithium-induced mitochondrial dysfunction through antioxidant activities in cardiac mitochondria, may be beneficial for prevention and treatment of lithium toxicities, either as a drug to treat BD or as an environmental pollutant.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01480545.2023.2228521DOI Listing

Publication Analysis

Top Keywords

cardiac mitochondria
16
mitochondrial dysfunction
12
sdh activity
12
mitochondrial swelling
12
lipid peroxidation
12
mitochondrial
11
hesperidin
8
antioxidant activity
8
toxicity rat
8
isolated mitochondria
8

Similar Publications

The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.

View Article and Find Full Text PDF

Maternal exposure to bisphenol A induces congenital heart disease through mitochondrial dysfunction.

FASEB J

January 2025

Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.

Congenital heart disease (CHD) represents a major birth defect associated with substantial morbidity and mortality. Although environmental factors are acknowledged as potential contributors to CHD, the underlying mechanisms remain poorly understood. Bisphenol A (BPA), a common endocrine disruptor, has attracted significant attention due to its widespread use and associated health risks.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM) represents a significant health burden, exacerbated by the global increase in type 2 diabetes mellitus (T2DM). This condition contributes substantially to the morbidity and mortality associated with diabetes, primarily through myocardial dysfunction independent of coronary artery disease. Current treatment strategies focus on managing symptoms rather than targeting the underlying pathophysiological mechanisms, highlighting a critical need for specific therapeutic interventions.

View Article and Find Full Text PDF

Two billion people worldwide suffer from anemia, which can lead to the onset of cardiac disorders; nevertheless, the precise mechanisms remain unclear. There are at least three distinct mechanisms by which iron deficiency (ID) contributes to the development of cardiac disorders. First, ID increases concentrations of intact fibroblast growth factor-23 (iFGF-23), which promotes left ventricular hypertrophy.

View Article and Find Full Text PDF

Under low O, the heart of Carassius auratus (goldfish) shows an enhanced hemodynamics. This is observed in ex vivo cardiac preparations from animals acclimated to both normoxia and short-term (4 days) moderate hypoxia and perfused for 90 min with a hypoxic medium. Under short-term hypoxia, this is associated with a higher ventricular muscularity and an expanded mitochondrial compartment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!