Biofouling of ships' internal seawater systems (ISS) can cause significant operational issues and is a potential transfer mechanism for marine nonindigenous species. This study used an engine room simulator and economic evaluation to quantify impacts on commercial ship performance of biofouling occlusion within various ISS nodes (sea chest, strainer, and heat exchangers). A characteristic hockey-stick relationship between occlusion and impact emerged, whereby engine room systems could tolerate up to 55% occlusion of a single node without operational impact, followed by rapid performance deterioration. The relative magnitude of impacts varied by ISS node and in response to changes in ambient seawater temperatures. System tolerance was much lower when simultaneous occlusion of multiple nodes was assessed. In economic terms, consequences included required freight rate increases of 1-26% prior to forced (automatic) slowdown of the ship and up to 82% increases if slowdown conditions were required.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2023.2225411DOI Listing

Publication Analysis

Top Keywords

biofouling occlusion
8
ships' internal
8
internal seawater
8
seawater systems
8
engine room
8
occlusion ships'
4
systems operational
4
operational economic
4
economic biosecurity
4
biosecurity consequences
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!