A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Derivation of riding risk precursors using 100 delivery motor scooter naturalistic riding study. | LitMetric

Derivation of riding risk precursors using 100 delivery motor scooter naturalistic riding study.

Accid Anal Prev

Hanyang University Erica Campus, Department of Transportation and Logistics Engineering, Ansan 15588, 55 Hanyangdaehak-ro, Sangnok-gu, Republic of Korea. Electronic address:

Published: September 2023

The rapid growth of the delivery service market in Korea due to the impact of COVID-19 has resulted in an increase in crashes associated with delivery motor scooters. In particular, required minimum delivery time, which is an important factor for food delivery service, can lead to hazardous riding situations leading to traffic crashes. Although the food delivery service industry is continuously increasing, effective measures to improve the traffic safety of delivery motor scooters are insufficient. This study derived precursors in order to detect risky riding events using real-world naturalistic riding study data. It is essential to understand the riding characteristics of food delivery motor scooters to conduct the riding safety monitoring in more scientific and automated manners. Various candidate precursors were derived from riding characteristics data collected from GPS sensors and inertial measurement unit sensors. A decision tree model was then adopted to classify unsafe and normal riding events in order to determine the priority of precursors. A classification accuracy of 95.7% was obtained using three salient riding risk precursors including the norm of the angular velocity, which represents composite vector quantity of 3-axis measurements, acceleration, and X-axis angular velocity. The results of this study are expected to be used as a fundamental data to prepare for riding safety management systems that contribute to enhancing the safety of food delivery motor scooters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2023.107186DOI Listing

Publication Analysis

Top Keywords

delivery motor
20
motor scooters
16
food delivery
16
delivery service
12
riding
10
delivery
9
riding risk
8
risk precursors
8
naturalistic riding
8
riding study
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!