Stimuli-responsive hydrogels (HGs) with a controlled drug release profile are the current challenge for advanced therapeutic applications. Specifically, antidiabetic drug-loaded glucose-responsive HGs are being investigated for closed-loop insulin delivery in insulin-dependent diabetes patients. In this direction, new design principles must be exploited to create inexpensive, naturally occurring, biocompatible glucose-responsive HG materials for the future. In this work, we developed chitosan nanoparticle/poly(vinyl alcohol) (PVA) hybrid HGs (CPHGs) for controlled insulin delivery for diabetes management. In this design, PVA and chitosan nanoparticles (CNPs) are cross-linked with a glucose-responsive formylphenylboronic acid (FPBA)-based cross-linker . Leveraging the structural diversity of FPBA and its pinacol ester-based cross-linkers, we fabricate six CPHGs (CPHG1-6) with more than 80% water content. Using dynamic rheological measurements, we demonstrate elastic solid-like properties of CPHG1-6, which are dramatically reduced under low-pH and high-glucose environments. An drug release assay reveals size-dependent glucose-responsive drug release from the CPHGs under physiological conditions. It is important to note that the CPHGs show appreciable self-healing and noncytotoxic properties. Promisingly, we observe a significantly slower insulin release profile from the CPHG matrix in the type-1 diabetes (T1D) rat model. We are actively pursuing scaling up of CPHGs and the safety studies for clinical trial in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c05031 | DOI Listing |
Sensors (Basel)
December 2024
Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary.
The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacy, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou 221003, China.
To design a multifunctional nanozyme hydrogel with antibacterial, photo-responsive nitric oxide-releasing, and antioxidative properties for promoting the healing of infected wounds. We first developed ultra-small silver nanoparticles (NPs)-decorated sodium nitroprusside-doped Prussian blue (SNPB) NPs, referred to as SNPB@Ag NPs, which served as a multifunctional nanozyme. Subsequently, this nanozyme, together with geniposide (GE), was incorporated into a thermo-sensitive hydrogel, formulated from Poloxamer 407 and carboxymethyl chitosan, creating a novel antibacterial wound dressing designated as GE/SNPB@Ag hydrogel.
View Article and Find Full Text PDFPharmaceutics
December 2024
College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Republic of Korea.
Background/objectives: A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and duration of drug exposure.
Methods: Fenofibrate-loaded solid dispersions (FNSDs) were prepared using poloxamer 407 and Eudragit RSPO at varied ratios via solvent evaporation.
Pharmaceutics
December 2024
Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
Background/objectives: The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (F-FDG PET/CT).
Methods: DEBs were prepared by polyvinyl alcohol-based macromer crosslinked with -acryl tyrosine and ,'-methylenebis(acrylamide). Gemcitabine was loaded through ion change to obtain G-DEBs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!