Ruoff and co-workers recently demonstrated low-temperature (1193 K) homoepitaxial diamond growth from liquid gallium solvent. To develop an atomistic mechanism for diamond growth underlying this remarkable demonstration, we carried out density functional theory-based molecular dynamics (DFT-MD) simulations to examine the mechanism of single-crystal diamond growth on various low-index crystallographic diamond surfaces (100), (110), and (111) in liquid Ga with CH. We find that carbon linear chains form in liquid Ga and then react with the growing diamond surface, leading first to the formation of carbon rings on the surface and then initiation of diamond growth. Our simulations find faster growth on the (110) surface than on the (100) or (111) surfaces, suggesting the (110) surface as a plausible growth surface in liquid Ga. For (110) surface growth, we predict the optimum growth temperature to be ∼1300 K, arising from a balance between the kinetics of forming carbon chains dissolved in Ga and the stability of carbon rings on the growing surface. We find that the rate-determining step for diamond growth is dehydrogenation of the growing hydrogenated (110) surface of diamond. Inspired by the recent experimental studies by Ruoff and co-workers demonstrating that Si accelerates diamond growth in Ga, we show that addition of Si into liquid Ga significantly increases the rate of dehydrogenating the growing surface. Extrapolating from the DFT-MD predicted rates at 2800 to 3500 K, we predict the growth rate at the experimental growth temperature of 1193 K, leading to rates in reasonable agreement with the experiment. These fundamental mechanisms should provide guidance in optimizing low-temperature diamond growth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c03314DOI Listing

Publication Analysis

Top Keywords

diamond growth
28
110 surface
16
growth
14
diamond
11
surface
9
liquid gallium
8
molecular dynamics
8
ruoff co-workers
8
carbon rings
8
growth temperature
8

Similar Publications

Diamond Blackfan anemia (DBA) is an autosomal dominant disorder with a heterogeneous clinical presentation which may include macrocytic anemia typically presenting in the first year of life, growth retardation, and congenital malformations in 30%-50% of patients. This phenotypic variability is partially explained by genotype-phenotype correlations, with several ribosomal protein genes implicated in this disorder. Most cases are due to de novo variants, but familial occurrences highlight variable expressivity and reduced penetrance.

View Article and Find Full Text PDF

Background: Underground research laboratories (URLs) provide a window on the deep biosphere and enable investigation of potential microbial impacts on nuclear waste, CO and H stored in the subsurface. We carried out the first multi-year study of groundwater microbiomes sampled from defined intervals between 140 and 400 m below the surface of the Horonobe and Mizunami URLs, Japan.

Results: We reconstructed draft genomes for > 90% of all organisms detected over a four year period.

View Article and Find Full Text PDF

Pressure-induced polymerization (PIP) of aromatic molecules has emerged as an effective method for synthesizing various carbon-based materials. The selection of suitable functionalized molecular precursors is crucial for obtaining the desired structures and functions. In this work, 1,4-difluorobenzene (1,4-DFB) was selected as the building block for PIP.

View Article and Find Full Text PDF

Invasive lobular carcinoma of the breast (ILC) are typically estrogen receptor α (ER)-positive and present with biomarkers of anti-estrogen sensitive disease, yet patients with ILC face uniquely poor long-term outcomes with increased recurrence risk, suggesting endocrine response and ER function are unique in ILC. We previously found specifically in ILC cells that ER is co-regulated by the DNA repair protein Mediator of DNA Damage Checkpoint 1 (MDC1). This novel MDC1 activity, however, was associated with dysfunction in the canonical DNA repair activity of MDC1, but absent typical features of DNA repair deficiency.

View Article and Find Full Text PDF

Severe lung injury causes airway basal stem cells to migrate and outcompete alveolar stem cells, resulting in dysplastic repair. We found that this "stem cell collision" generates an injury-induced tissue niche containing keratin 5 epithelial cells and plastic Pdgfra mesenchymal cells. Single-cell analysis revealed that the injury-induced niche is governed by mesenchymal proliferation and Notch signaling, which suppressed Wnt/Fgf signaling in the injured niche.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!